Abstract:
A data sensor may be configured with a magnetic stack disposed between first and second magnetic shields. The magnetic stack can have a non-magnetic spacer layer disposed between first and second magnetically free laminations respectively coupled to the first and second magnetic shields via first and second electrode laminations. The first magnetically free lamination may have a first sub-layer constructed of a transition metal material and disposed between a second sub-layer constructed of a negative magnetostriction material and a third sub-layer constructed of a positive magnetostriction material.have a magnetic stack configured without a fixed magnetization structure and with a barrier layer disposed between first and second magnetically free layers. At least one magnetically free layer can be coupled to a magnetic shield by magnetic electrode and coupling layers with the coupling layer configured with at least a non-magnetic first coupling sub-layer disposed between a magnetic second coupling sub-layer and a magnetic third coupling sub-layer.
Abstract:
A data storage device may be generally directed to a data transducing head capable of magnetoresistive data reading. Such a data transducing head may be configured with at least a trilayer reader that contacts and is biased by a coupling feature. The coupling feature may have a smaller extent from an air bearing surface (ABS) than the trilayer reader.
Abstract:
A data storage device may be generally directed to a data transducing head capable of magnetoresistive data reading. Such a data transducing head may be configured with at least a trilayer reader that contacts and is biased by a coupling feature. The coupling feature may have a smaller extent from an air bearing surface (ABS) than the trilayer reader.
Abstract:
A magnetic tunnel junction having a ferromagnetic free layer and a ferromagnetic pinned reference layer, each having an out-of-plane magnetic anisotropy and an out-of-plane magnetization orientation, the ferromagnetic free layer switchable by spin torque. The magnetic tunnel junction includes a ferromagnetic assist layer proximate the free layer, the assist layer having a low magnetic anisotropy less than 700 Oe and positioned to apply a magnetic field on the free layer.
Abstract:
A magnetic sensor comprising a first shield and a second shield and a sensor stack between the first and the second shield, the sensor stack having a plurality of layers wherein at least one layer is annealed using in-situ rapid thermal annealing. In one implementation of the magnetic sensor a seed layer is annealed using in-situ rapid thermal annealing. Alternatively, one of a barrier layer, an antiferromagnetic (AFM) layer, and a cap layer is annealed using in-situ rapid thermal annealing.
Abstract:
A reader includes a bearing surface, a sensor stack and a bottom shield below the sensor stack. The bottom shield has a synthetic antiferromagnetic (SAF) structure that includes a first magnetic layer that has a first width at the bearing surface and a second magnetic layer that has a second width at the bearing surface. The second width is less than the first width. The second magnetic layer has a magnetic orientation with at least a component that is substantially orthogonal to the bearing surface.
Abstract:
A data sensor may be configured with a magnetic stack disposed between first and second magnetic shields. The magnetic stack can have a non-magnetic spacer layer disposed between first and second magnetically free laminations respectively coupled to the first and second magnetic shields via first and second electrode laminations. The first magnetically free lamination may have a first sub-layer constructed of a transition metal material and disposed between a second sub-layer constructed of a negative magnetostriction material and a third sub-layer constructed of a positive magnetostriction material.