摘要:
In an apparatus for embedding digital watermarks into an image, a watermark embedding region extraction unit extracts an image region to contain watermarks from a wavelet transformed entire image. A watermark generation unit generates a watermark data row to be embedded according to a user's private key. A normalization operation unit normalizes the quantized data value by using a quantization unit into a normalized data value. An inverse quantization inversely quantizes and outputs the normalized data value. A watermark embedment unit embeds a watermark-embedded data value as a corresponding pixel data value into the watermark embedding region, wherein the watermark-embedded data value is obtained by subtracting, from the inversely quantized data value, the watermark data value added prior to the quantization.
摘要:
Provided is a method and apparatus for generating and consuming sensory effect media. The method for generating sensory effect media includes receiving sensory effect information about sensory effects that are applied to media, and generating sensory effect metadata including the received sensory effect information. The sensory effect metadata includes effect description information for describing the sensory effects and device control description information for controlling devices that perform the sensory effects.
摘要:
Provided are method and apparatus for representing sensory effects, and a computer readable recording medium storing user sensory preference metadata. A method for providing user preference information includes: receiving preference information for predetermined sensory effects from a user; and generating user sensory preference metadata including the received preference information, wherein the user sensory preference metadata includes personal preference information that describes the preference information.
摘要:
Provided is a method and apparatus for generating and consuming sensory effect media. The method for generating sensory effect media includes receiving sensory effect information about sensory effects that are applied to media, and generating sensory effect metadata including the received sensory effect information.
摘要:
An apparatus and method for preventing illegitimate distribution of digital contents on Internet obtains a first wavelet image having a user information-embedding region by performing a wavelet transformation (WT). The user information embedding region of the first wavelet image is wavelet-transformed to obtain a second wavelet image composed of a discrete cosine (DC) region and high-frequency regions second wavelet image. A high-frequency components removed image is obtained by removing high-frequency components in the high-frequency regions of the second wavelet image, and subjected to an inverse WT (IWT) to be outputted as an IWT image. A user information embedding unit embeds user information to the IWT image, wherein data of the user information are sequentially embedded to positions where a difference value between the user information embedding region and the new user information embedding region is small, to thereby reset the user information embedding region as the user information.
摘要:
An apparatus and method for preventing illegitimate distribution of digital contents on Internet obtains a first wavelet image having a user information-embedding region by performing a wavelet transformation (WT). The user information embedding region of the first wavelet image is wavelet-transformed to obtain a second wavelet image composed of a discrete cosine (DC) region and high-frequency regions second wavelet image. A high-frequency components removed image is obtained by removing high-frequency components in the high-frequency regions of the second wavelet image, and subjected to an inverse WT (IWT) to be outputted as an IWT image. A user information embedding unit embeds user information to the IWT image, wherein data of the user information are sequentially embedded to positions where a difference value between the user information embedding region and the new user information embedding region is small, to thereby reset the user information embedding region as the user information.
摘要:
The present invention relates to a method for blindly embedding and extracting a watermark by using wavelet transform and a human visual system (HVS) model, which obtains both robustness and invisibility by applying the HVS model of NVF or JND imitating a human visual system to a middle frequency band for wavelet transformation and using a quantization step determined adaptively according to the importance of wavelet coefficient. A method according to the present invention includes the steps of: decomposing an original image by a wavelet and selecting a middle frequency band as a watermark embedment area; obtaining an HVS model having a human visual recognition information at each embedding potion; determining the importance of the coefficient for each embedding potion, and adaptively determining a quantization step for each embedment location by using the importance and the HVS model; quantizing each pair of embedment area by the quantization step and variably embedding a watermark sequence into a middle frequency band according to a value of the watermark; and performing inverse wavelet transform on an overall area into which the watermark sequence is embedded, and generating a watermarked image.
摘要:
Disclosed is a method for embedding a digital watermark on a wavelet lowest subband. The method including: setting a DC component region of a multi-stage wavelet-transformed original copy image to a watermark embedment region, and high-frequency filtering an original picture LLn of the embedment region; generating index information for designating a pixel position, and a watermark sequence to be embedded; calculating an embedment strength λ for each position of the watermark embedment region; in case the watermark sequence is sequentially embedded on an embedded position designated by the index information, mutually comparing the original picture LLn coefficient value for each embedded position with a mirror picture LLn′ coefficient value, and then altering the original picture LLn coefficient value; and in case the original picture LLn coefficient value is differentiated above a predetermined value with reference to the corresponding embedment strength λ, skipping the watermark embedment for the position.