User trustworthiness
    12.
    发明授权
    User trustworthiness 有权
    用户可信赖性

    公开(公告)号:US09519682B1

    公开(公告)日:2016-12-13

    申请号:US13117037

    申请日:2011-05-26

    CPC classification number: G06F17/3053 G06Q10/10 H04H20/28 H04H60/82

    Abstract: Embodiments are directed towards generating a unified user account trustworthiness system through user account trustworthiness scores. A trusted group of user accounts may be identified for a given action by grouping a plurality of user accounts into tiers based on a trustworthiness score of each user account for the given action. The tiers and/or trustworthiness scores may be employed to classify an item, such as a message as spam or non-spam, based on input from the user accounts. The trustworthiness scores may also be employed to determine if a user account is a robot account or a human account. The trusted group for a given action may dynamically evolve over time by regrouping the user accounts based on modified trustworthiness scores. A trustworthiness score of an individual user account may be modified based on input received from the individual user account and input from other user accounts.

    Abstract translation: 实施例旨在通过用户帐户可信度得分来生成统一的用户帐户可信赖性系统。 可以基于针对给定动作的每个用户帐户的可信度分数将多个用户帐户分组成层,可以为给定动作识别可信赖的用户帐户组。 层级和/或可信赖性分数可以用于基于来自用户帐户的输入来将项目(诸如作为垃圾邮件或非垃圾邮件)的消息分类。 还可以使用可信度分数来确定用户帐户是机器人帐户还是人类账户。 给定动作的受信任组可以通过基于修改的可信度得分重新分组用户账户而随着时间的推移而动态演变。 可以基于从单个用户帐户接收的输入和来自其他用户帐户的输入来修改个人用户帐户的可信度分数。

    Enhanced matching through explore/exploit schemes
    13.
    发明授权
    Enhanced matching through explore/exploit schemes 有权
    通过探索/利用方案增强匹配

    公开(公告)号:US08560293B2

    公开(公告)日:2013-10-15

    申请号:US13569728

    申请日:2012-08-08

    CPC classification number: G06F17/3089

    Abstract: Content items are selected to be displayed on a portal page in such a way as to maximize a performance metric such as click-through rate. Problems relating to content selection are addressed, such as changing content pool, variable performance metric, and delay in receiving feedback on an item once the item has been displayed to a user. An adaptation of priority-based schemes for the multi-armed bandit problem, are used to project future trends of data. The adaptation introduces experiments concerning a future time period into the calculation, which increases the set of data on which to solve the multi-armed bandit problem. Also, a Bayesian explore/exploit method is formulated as an optimization problem that addresses all of the issues of content item selection for a portal page. This optimization problem is modified by Lagrange relaxation and normal approximation, which allow computation of the optimization problem in real time.

    Abstract translation: 内容项被选择以在门户页面上显示,以便最大化诸如点击率的性能度量。 解决与内容选择相关的问题,例如改变内容池,可变性能度量,以及一旦项目已被显示给用户,对项目的反馈的延迟。 用于多武装强盗问题的基于优先权的方案的适应性用于预测未来数据趋势。 适应性将关于未来时间段的实验引入计算,这增加了解决多武装强盗问题的数据集。 此外,贝叶斯探索/漏洞利用方法被制定为一个优化问题,解决门户页面的内容项目选择的所有问题。 该优化问题由拉格朗日弛豫和正态逼近法进行修正,可实时计算优化问题。

    Enhanced matching through explore/exploit schemes
    14.
    发明授权
    Enhanced matching through explore/exploit schemes 有权
    通过探索/利用方案增强匹配

    公开(公告)号:US08244517B2

    公开(公告)日:2012-08-14

    申请号:US12267534

    申请日:2008-11-07

    CPC classification number: G06F17/3089

    Abstract: Content items are selected to be displayed on a portal page in such a way as to maximize a performance metric such as click-through rate. Problems relating to content selection are addressed, such as changing content pool, variable performance metric, and delay in receiving feedback on an item once the item has been displayed to a user. An adaptation of priority-based schemes for the multi-armed bandit problem are used to project future trends of data. The adaptation introduces experiments concerning a future time period into the calculation, which increases the set of data on which to solve the multi-armed bandit problem. Also, a Bayesian explore/exploit method is formulated as an optimization problem that addresses all of the issues of content item selection for a portal page. This optimization problem is modified by Lagrange relaxation and normal approximation, which allow computation of the optimization problem in real time.

    Abstract translation: 内容项被选择以在门户页面上显示,以便最大化诸如点击率的性能度量。 解决与内容选择相关的问题,例如改变内容池,可变性能度量,以及一旦项目已被显示给用户,对项目的反馈的延迟。 用于多武装强盗问题的基于优先权的方案的改编用于预测未来数据趋势。 适应性将关于未来时间段的实验引入计算,这增加了解决多武装强盗问题的数据集。 此外,贝叶斯探索/漏洞利用方法被制定为一个优化问题,解决门户页面的内容项目选择的所有问题。 该优化问题由拉格朗日弛豫和正态逼近法进行修正,可实时计算优化问题。

    Online Active Learning in User-Generated Content Streams
    16.
    发明申请
    Online Active Learning in User-Generated Content Streams 有权
    用户生成的内容流中的在线主动学习

    公开(公告)号:US20130111005A1

    公开(公告)日:2013-05-02

    申请号:US13282285

    申请日:2011-10-26

    Abstract: Software for online active learning receives content posted to an online stream at a website. The software converts the content into an elemental representation and inputs the elemental representation into a probit model to obtain a predictive probability that the content is abusive. The software also calculates an importance weight based on the elemental representation. And the software updates the probit model using the content, the importance weight, and an acquired label if a condition is met. The condition depends on an instrumental distribution. The software removes the content from the online stream if a condition is met. The condition depends on the predictive probability, if an acquired label is unavailable.

    Abstract translation: 用于在线主动学习的软件会收到发布到网站上的在线流的内容。 软件将内容转换为元素表示,并将元素表示输入到概率模型中,以获得内容滥用的预测概率。 该软件还基于元素表示计算重要性权重。 并且如果满足条件,则软件使用内容,重要性权重以及获取的标签来更新概率模型。 条件取决于工具分配。 如果满足条件,该软件将从在线流中删除内容。 如果获取的标签不可用,则条件取决于预测概率。

    ENHANCED MATCHING THROUGH EXPLORE/EXPLOIT SCHEMES
    17.
    发明申请
    ENHANCED MATCHING THROUGH EXPLORE/EXPLOIT SCHEMES 有权
    通过探索/开发计划进行更好的匹配

    公开(公告)号:US20120303349A1

    公开(公告)日:2012-11-29

    申请号:US13569728

    申请日:2012-08-08

    CPC classification number: G06F17/3089

    Abstract: Content items are selected to be displayed on a portal page in such a way as to maximize a performance metric such as click-through rate. Problems relating to content selection are addressed, such as changing content pool, variable performance metric, and delay in receiving feedback on an item once the item has been displayed to a user. An adaptation of priority-based schemes for the multi-armed bandit problem, are used to project future trends of data. The adaptation introduces experiments concerning a future time period into the calculation, which increases the set of data on which to solve the multi-armed bandit problem. Also, a Bayesian explore/exploit method is formulated as an optimization problem that addresses all of the issues of content item selection for a portal page. This optimization problem is modified by Lagrange relaxation and normal approximation, which allow computation of the optimization problem in real time.

    Abstract translation: 内容项被选择以在门户页面上显示,以便最大化诸如点击率的性能度量。 解决与内容选择相关的问题,例如改变内容池,可变性能度量,以及一旦项目已被显示给用户,对项目的反馈的延迟。 用于多武装强盗问题的基于优先权的方案的适应性用于预测未来数据趋势。 适应性将关于未来时间段的实验引入计算,这增加了解决多武装强盗问题的数据集。 此外,贝叶斯探索/漏洞利用方法被制定为一个优化问题,解决门户页面的内容项目选择的所有问题。 该优化问题由拉格朗日弛豫和正态逼近法进行修正,可实时计算优化问题。

    ENHANCED MATCHING THROUGH EXPLORE/EXPLOIT SCHEMES
    18.
    发明申请
    ENHANCED MATCHING THROUGH EXPLORE/EXPLOIT SCHEMES 审中-公开
    通过探索/开发计划进行更好的匹配

    公开(公告)号:US20100121801A1

    公开(公告)日:2010-05-13

    申请号:US12267538

    申请日:2008-11-07

    CPC classification number: G06N7/005 G06Q30/02 H04L67/02

    Abstract: Content items are selected to be displayed on a portal page in such a way as to maximize a performance metric such as click-through rate. Problems relating to content selection are addressed, such as changing content pool, variable performance metric, and delay in receiving feedback on an item once the item has been displayed to a user. An adaptation of priority-based schemes for the multi-armed bandit problem are used to project future trends of data. The adaptation introduces experiments concerning a future time period into the calculation, which increases the set of data on which to solve the multi-armed bandit problem. Also, a Bayesian explore/exploit method is formulated as an optimization problem that addresses all of the issues of content item selection for a portal page. This optimization problem is modified by Lagrange relaxation and normal approximation, which allow computation of the optimization problem in real time.

    Abstract translation: 内容项被选择以在门户页面上显示,以便最大化诸如点击率的性能度量。 解决与内容选择相关的问题,例如改变内容池,可变性能度量,以及一旦项目已被显示给用户,对项目的反馈的延迟。 用于多武装强盗问题的基于优先权的方案的改编用于预测未来数据趋势。 适应性将关于未来时间段的实验引入计算,这增加了解决多武装强盗问题的数据集。 此外,贝叶斯探索/漏洞利用方法被制定为一个优化问题,解决门户页面的内容项目选择的所有问题。 该优化问题由拉格朗日弛豫和正态逼近法进行修正,可实时计算优化问题。

Patent Agency Ranking