Method and system for regression-based object detection in medical images
    11.
    发明授权
    Method and system for regression-based object detection in medical images 有权
    医学图像中基于回归的物体检测方法与系统

    公开(公告)号:US07949173B2

    公开(公告)日:2011-05-24

    申请号:US11866572

    申请日:2007-10-03

    IPC分类号: G06K9/00 A61B6/00

    摘要: A method and system for regression-based object detection in medical images is disclosed. A regression function for predicting a location of an object in a medical image based on an image patch is trained using image-based boosting ridge regression (IBRR). The trained regression function is used to determine a difference vector based on an image patch of a medical image. The difference vector represents the difference between the location of the image patch and the location of a target object. The location of the target object in the medical image is predicted based on the difference vector determined by the regression function.

    摘要翻译: 公开了一种用于医学图像中基于回归的物体检测的方法和系统。 使用基于图像的增强脊回归(IBRR)训练用于基于图像块预测医学图像中的对象的位置的回归函数。 训练回归函数用于基于医学图像的图像块来确定差分矢量。 差分向量表示图像块的位置与目标对象的位置之间的差异。 基于由回归函数确定的差分向量来预测目标对象在医学图像中的位置。

    System and method for using a similarity function to perform appearance matching in image pairs
    12.
    发明授权
    System and method for using a similarity function to perform appearance matching in image pairs 有权
    使用相似度函数执行图像对中的外观匹配的系统和方法

    公开(公告)号:US07831074B2

    公开(公告)日:2010-11-09

    申请号:US11539989

    申请日:2006-10-10

    IPC分类号: G06K9/00 G06K9/62 H04N5/225

    摘要: The present invention is directed to a method for populating a database with a set of images of an anatomical structure. The database is used to perform appearance matching in image pairs of the anatomical structure. A set of image pairs of anatomical structures is received, where each image pair is annotated with a plurality of location-sensitive regions that identify a particular aspect of the anatomical structure. Weak learners are iteratively selected and an image patch is identified. A boosting process is used to identify a strong classifier based on responses to the weak learners applied to the identified image patch for each image pair. The responses comprise a feature response and a location response associated with the image patch. Positive and negative image pairs are generated. The positive and negative image pairs are used to learn a similarity function. The learned similarity function and iteratively selected weak learners are stored in the database.

    摘要翻译: 本发明涉及一种用解剖结构的一组图像填充数据库的方法。 该数据库用于在解剖结构的图像对中执行外观匹配。 接收一组解剖结构的图像对,其中每个图像对用多个识别解剖结构的特定方面的位置敏感区域注释。 迭代选择弱学习者,并识别图像补丁。 基于对应用于每个图像对的所识别的图像补丁的弱学习者的响应,使用增强过程来识别强分类器。 响应包括与图像块相关联的特征响应和位置响应。 产生正负图像对。 正负图像对用于学习相似度函数。 学习的相似度函数和迭代选择的弱学习者存储在数据库中。

    Method and system for automatic detection and measurement of mitral valve inflow patterns in doppler echocardiography
    14.
    发明授权
    Method and system for automatic detection and measurement of mitral valve inflow patterns in doppler echocardiography 有权
    多普勒超声心动图二尖瓣流入模式的自动检测和测量方法及系统

    公开(公告)号:US08295569B2

    公开(公告)日:2012-10-23

    申请号:US12481861

    申请日:2009-06-10

    IPC分类号: G06K9/00

    摘要: A method and system for segmentation of mitral valve inflow (MI) patterns in Doppler echocardiogram images is disclosed. Trained root detectors are used to detect left root candidates, right root candidates, and peak candidates in an input Doppler echocardiogram image. Two global structure detectors, a single triangle detector for non-overlapping E-waves and A-waves and a double triangle detector for overlapping E-waves and A-waves, are used to detect single triangle candidates and double triangle candidates based on the left root, right root, and peak candidates. A shape profile is used to determine a shape probability for each of the single triangle candidates and each of the double triangle candidates. The best single triangle candidate and the best double triangle candidate are selected based on shape probability and detection probability. One of the best single triangle candidate and the best double triangle candidate is selected as the final segmentation result based on a shape probability comparison.

    摘要翻译: 公开了一种用于多普勒超声心动图图像中二尖瓣流入(MI)模式分割的方法和系统。 训练的根检测器用于检测输入多普勒超声心动图图像中的左根候选,右根候选和峰候选。 两个全局结构检测器,用于非重叠E波和A波的单个三角形检测器和用于重叠E波和A波的双三角形检测器用于基于左侧检测单个三角形候选和双三角形候选 根,右根和峰值候选。 形状轮廓用于确定每个单个三角形候选和每个双三角形候选的形状概率。 基于形状概率和检测概率选择最佳单三角候选和最佳双三角候选。 基于形状概率比较,选择最佳单三角候选和最佳双三角候选之一作为最终分割结果。

    System and method for learning relative distance in a shape space using image based features
    18.
    发明授权
    System and method for learning relative distance in a shape space using image based features 有权
    使用基于图像的特征来学习形状空间中的相对距离的系统和方法

    公开(公告)号:US07603000B2

    公开(公告)日:2009-10-13

    申请号:US11464851

    申请日:2006-08-16

    IPC分类号: G06K9/60

    摘要: A system and method for identifying a shape of an anatomical structure in an input image is disclosed. An input image is received and warped using a set of warping templates resulting in a set of warped images. An integral image is calculated for each warped image. Selected features are extracted based on the integral image. A boosted feature score is calculated for the combined selected features for each warped image. The warped images are ranked based on the boosted feature scores. A predetermined number of warped images are selected that have the largest feature scores. Each selected warped image is associated with its corresponding warping template. The corresponding warping templates are associated with stored shape models. The shape of the input image is identified based on the weighted average of the shapes models.

    摘要翻译: 公开了一种用于识别输入图像中的解剖结构的形状的系统和方法。 使用一组翘曲模板接收和扭曲输入图像,产生一组翘曲图像。 为每个弯曲图像计算整体图像。 基于积分图像提取所选特征。 对于每个弯曲图像的组合选定特征,计算提升的特征分数。 翘曲的图像根据提升的特征得分进行排名。 选择具有最大特征分数的预定数量的翘曲图像。 每个选择的变形图像与其相应的翘曲模板相关联。 相应的变形模板与存储的形状模型相关联。 基于形状模型的加权平均值来识别输入图像的形状。

    Method and System for Automatic Detection and Measurement of Mitral Valve Inflow Patterns in Doppler Echocardiography
    19.
    发明申请
    Method and System for Automatic Detection and Measurement of Mitral Valve Inflow Patterns in Doppler Echocardiography 有权
    多普勒超声心动图二尖瓣流入模式自动检测和测量方法与系统

    公开(公告)号:US20090310837A1

    公开(公告)日:2009-12-17

    申请号:US12481861

    申请日:2009-06-10

    IPC分类号: G06K9/00

    摘要: A method and system for segmentation of mitral valve inflow (MI) patterns in Doppler echocardiogram images is disclosed. Trained root detectors are used to detect left root candidates, right root candidates, and peak candidates in an input Doppler echocardiogram image. Two global structure detectors, a single triangle detector for non-overlapping E-waves and A-waves and a double triangle detector for overlapping E-waves and A-waves, are used to detect single triangle candidates and double triangle candidates based on the left root, right root, and peak candidates. A shape profile is used to determine a shape probability for each of the single triangle candidates and each of the double triangle candidates. The best single triangle candidate and the best double triangle candidate are selected based on shape probability and detection probability. One of the best single triangle candidate and the best double triangle candidate is selected as the final segmentation result based on a shape probability comparison.

    摘要翻译: 公开了一种用于多普勒超声心动图图像中二尖瓣流入(MI)模式分割的方法和系统。 训练的根检测器用于检测输入多普勒超声心动图图像中的左根候选,右根候选和峰候选。 两个全局结构检测器,用于非重叠E波和A波的单个三角形检测器和用于重叠E波和A波的双三角形检测器用于基于左侧检测单个三角形候选和双三角形候选 根,右根和峰值候选。 形状轮廓用于确定每个单个三角形候选和每个双三角形候选的形状概率。 基于形状概率和检测概率选择最佳单三角候选和最佳双三角候选。 基于形状概率比较,选择最佳单三角候选和最佳双三角候选之一作为最终分割结果。