Abstract:
A bicycle rear sprocket comprises a sprocket body, a plurality of sprocket teeth, a shifting facilitation recess, and an upshifting facilitation projection. The plurality of sprocket teeth extends radially outwardly from the sprocket body. The shifting facilitation recess is to facilitate a shifting operation in which a bicycle chain is shifted between the bicycle rear sprocket and a smaller rear sprocket adjacent to the bicycle rear sprocket without another sprocket between the bicycle rear sprocket and the smaller rear sprocket. The upshifting facilitation projection is provided in the shifting facilitation recess to support the bicycle chain in an upshifting operation in which the bicycle chain is shifted from the bicycle rear sprocket to the smaller rear sprocket.
Abstract:
A bicycle sprocket comprises a sprocket body and chain-driving teeth. The chain-driving teeth comprises at least one first tooth and at least one second tooth. The at least one first tooth has a first circumferential tooth-length defined in a circumferential direction at a radial location defined in vicinity of a reference line. The at least one second tooth has a second circumferential tooth-length defined in the circumferential direction at the radial location. The first circumferential tooth-length is larger than the second circumferential tooth-length. A dimensional difference between the first circumferential tooth-length and the second circumferential tooth-length is equal to or smaller than 1 mm.
Abstract:
A bicycle drive system includes a front sprocket assembly having a first front sprocket and a second front-sprocket. The first front-sprocket has a first front-tooth number that is the largest tooth number in the front sprocket assembly. The second front-sprocket has a second front-tooth number that is less than or equal to the first front-tooth number. The second front-sprocket is adjacent to the first front-sprocket without another sprocket intervening therebetween in an axial direction. The first front-tooth number is less than or equal to 40.
Abstract:
A bicycle sprocket assembly is basically provided with a first sprocket having a first pitch circle diameter, a second sprocket having a second pitch circle diameter, a third sprocket having a third pitch circle diameter, a fourth sprocket having a fourth pitch circle diameter, and a sprocket supporting member. At least one of the second and third sprockets is attached to the sprocket supporting member. The first sprocket is attached to the second sprocket so that the second sprocket is positioned between the first sprocket and the sprocket supporting member in an axial direction. The fourth sprocket is attached to the third sprocket so that the third sprocket is positioned between the sprocket supporting member and the fourth sprocket in the axial direction. The second sprocket is adjacent to the third sprocket without another sprocket positioned therebetween in the axial direction.
Abstract:
A bicycle transmission apparatus comprises a base member, a first transmission member, a second transmission member, a first coupling member, a first guide structure, a switching device, and a transmission controller. The switching device is configured to switch a position of the first transmission member relative to the base member in an axial direction between a first axial position and a second axial position. The transmission controller is configured to control the switching device and the first guide structure so as not to change a first engagement state of the first coupling member from one cogwheel to another adjacent cogwheel among first cogwheels when the first transmission member moves relative to the base member in association with a movement of the first guide structure relative to the base member to change a second engagement state of the first coupling member from one cogwheel to another adjacent cogwheel among second cogwheels.
Abstract:
A bicycle hub assembly comprises a hub axle, a hub shell, a sprocket support body, and a clutch. The sprocket support body is rotatably mounted on the hub axle to rotate about a rotational axis. The sprocket support body is rotatable relative to the hub axle and the hub shell about the rotational axis. The clutch has a first coupling state where a pedaling rotational force is transmitted from the sprocket support body to the hub shell in a first rotational direction during pedaling, a first release state where the hub shell is rotatable relative to the sprocket support body in the first rotational direction during coasting, and a second coupling state where a coasting rotational force is transmitted from the hub shell to the sprocket support body in the first rotational direction during coasting.
Abstract:
A bicycle sprocket comprises a sprocket body, a plurality of sprocket teeth, and at least one chain-curvature limiting protuberance. The sprocket body is configured to be rotatable about a rotational center axis. The plurality of sprocket teeth extend radially outward from an outer periphery of the sprocket body. The at least one chain-curvature limiting protuberance is configured to limit axial curvature of a bicycle chain engaging with an independent neighboring bicycle sprocket which is adjacent to the bicycle sprocket without another sprocket between the bicycle sprocket and the independent neighboring bicycle sprocket. The axial curvature is curvature of the bicycle chain relative to the bicycle sprocket when viewed from a radial direction perpendicular to the rotational center axis. The at least one chain-curvature limiting protuberance is disposed on at least one of an outward facing side and an inward facing side.
Abstract:
A multiple bicycle sprocket assembly is basically provided that is capable of creating a gear ratio in a wide range. The multiple bicycle sprocket assembly includes a first sprocket and a second sprocket. The first sprocket includes a first tooth number that is less than or equal to ten. The second sprocket includes a second tooth number that is more than or equal to forty-four.