Abstract:
The vehicle-use tandem electric rotating machine includes a first stator-rotor pair, a second stator-rotor pair, and a controller individually controlling a first field current flowing into a first field coil of the first stator-rotor pair and a second field current flowing into a second field coil of the second stator-rotor pair. The first stator-rotor pair is configured to generate electric power to be supplied to essential electric loads, and the second stator-rotor pair is configured to generate electric power to be supplied to non-essential electric loads. The controller is configured to restrict the second field current from flowing into the second field coil when rotational speed of a vehicle engine driving the tandem electric rotating machine is lower than a predetermined threshold speed set above an idle speed of the vehicle engine.
Abstract:
A tandem rotary electric machine, to be applicable to various types of mobile bodies such as vehicles, is equipped with a primary rotary electric machine and a secondary rotary electric machine arranged in tandem mechanism. In the tandem rotary electric machine, heat energy generated by positive diodes and negative diodes forming one or more rectifier devices is dissipated to a stator core of the secondary rotary electric machine. The stator core of the secondary rotary electric machine acts as a heat sink through the housing. The stator core of the secondary rotary electric machine has a less frequency use, and a large size and a large weight than those of the primary rotary electric machine of high frequent and normal is used as a heat sink in order to prevent the temperature rise of the positive diode and the negative diode of the rectifier devices.
Abstract:
An apparatus having electric wheels comprises a pair of left and right wheels, rotary electric machines, i.e. motors, for individually driving these wheels, and a control unit for operating the motors. The motors each have a rotation axis offset from that of the wheel, drive the same one wheel of the pair, and are arranged at positions distanced in the radial direction of the axle by the same length, and on the same plane normal to the axial direction of the axle, being apart from each other in the circumferential direction of the axle with a predetermined angle therebetween. In a preferred mode, power is transmitted from the motors to a single wheel through a belt-type transmission mechanism incorporated in the wheel. Responsive and fine driving power control can be performed without sacrificing the cabin space, thereby providing a vehicle having excellent responsiveness, degree of freedom and reliability.
Abstract:
A brushless rotary electric machine includes a stator having an annular armature core with first radial teeth at the outer periphery thereof and second radial teeth at the inner periphery thereof and an armature winding wound between the teeth, a rotor having a pair of first and second rotary cores disposed tandem in the axial direction thereof, and a field coil. Each of the first and second rotary cores has a pair of coaxial outer and inner cylindrical pole members respectively facing the first and second radial teeth, a center core and a disk member magnetically connecting the pair of coaxial cylindrical pole members and the center core. The stator is accommodated by a first space defined by the outer and inner cylindrical members of the pair of first and second rotary cores. The field coil is accommodated by a second space defined by the inner cylindrical pole member and the center core of the first and second rotary cores.
Abstract:
An AC motor-generator includes a rotor made up of a first inductor core and a second inductor core arrayed in an axial direction of a rotary shaft. A plurality of permanent magnets are arrayed at an interval of 2&pgr; in electrical angle of an armature away from each other in the periphery of each of the first and second inductor cores. Each permanent magnet is magnetized in a radius direction of the first and second inductor cores so as to be opposed to a magnetomotive force produced by a field winding, thereby resulting in quick disappearance of the magnetic flux of the field upon disappearance of the magnetomotive force from the field winding.
Abstract:
A rotary electric machine for a vehicle has a rotor with a rotor shaft, a pair of rotor cores, a field winding and an annular core made of a stack of core sheets. The rotor core has a boss, a disc portion and a cylindrical part. The cylindrical part is connected with the disc portion and is continuous along the rotor shaft. The cylindrical part is formed with projections and recesses which are disposed alternately in a circumferential direction on the outer periphery thereof. Permanent magnets may be disposed in the recesses. The annular core is connected with outer peripheries of the projections of the cylindrical parts. By adopting the cylindrical parts and the annular core, diameter of the boss is enlarged.
Abstract:
In an alternator stator for vehicle, each of the phase-windings includes first and second coil-end groups at opposite axial ends the stator core. Each of the slots includes radially aligned six layers. Each of the phase-windings comprises a plurality of sets of U-shaped segments disposed in a pair of slots separated from each other by a pole-pitch and a plurality of connection segments formed from the U-shaped segments. Each of the sets includes a large segment having a pair of the conductor members disposed in the innermost and the outermost layers, a medium segment having a pair of the conductor members disposed in the layers inside the innermost and the outermost layers to be surrounded by the large segment at the first coil-end group, a small segment having a pair of conductor members respectively disposed in the middle two layers to be surrounded by the medium segment at the first coil-end group. The small segment of one of the sets is connected in series with the small segment of another adjacent thereto at the second coil-end group to form a wave winding. The large segment of one of the sets is connected in series with the medium segment of another of the sets adjacent thereto at the second coil-end group to form a lap winding. The wave winding and the lap winding are connected in series by the connection segments to form one of the plurality of phase-windings.
Abstract:
The present invention provides a compact, efficient and noiseless alternator for an automotive vehicle which employs a double-layer coil arrangement in a slot for eliminating coil end interference as well as improving the space factor. An automotive alternator comprises a Lundel-type core rotor with 16 poles, and a stator with toothed portions of 96 poles spaced by slots. U-shaped conductor segments are installed in the slots. One portion of the conductor is accommodated in an outer layer portion of a predetermined slot, while the other portion is accommodated in an inner layer portion of a slot phase shifted by an electric angle of 180°. In this manner, all of the slots are separated into the inner and outer layers to accommodate a plurality of conductor segments. These conductor segments are connected only at one side of the stator to form a total of twelve wavy winding coils. These twelve wavy winding coils are divided into three groups each consisting of a serial connection of four wavy windings to constitute one phase of a three-phase stator coil.
Abstract:
A stator winding has a plurality of conductor members forming coil ends, and each of the conductor members of the coil ends is hardened and heat treated to have hardness which changes along the length of conductor members. Therefore, the stiffness of the coil ends changes and resonant vibration of the stator can be reduced.