摘要:
An optical element covering member includes: at least one optical element; a support medium supporting the at least one optical element; and a shrinkable covering member covering the at least one optical element and the support medium. In the optical element covering member, among sides forming primary surfaces of the support medium, at least one set of sides facing each other is covered with the covering member, and the following equation (1) is satisfied under conditions at a temperature of 70° C., 0≦F≦1.65×104×t/L (1) where t indicates the thickness of the support medium, L indicates the length of the side of the support medium covered with the covering member, F indicates a tensile force of the covering member, which acts in a direction parallel to the side having the length L.
摘要:
An optical element covering member includes: at least one optical element; a support medium supporting the at least one optical element; and a shrinkable covering member covering the at least one optical element and the support medium. In the optical element covering member, among sides forming primary surfaces of the support medium, at least one set of sides facing each other is covered with the covering member, and the following equation (1) is satisfied under conditions at a temperature of 70° C., 0≦F≦1.65×104×t/L (1) where t indicates the thickness of the support medium, L indicates the length of the side of the support medium covered with the covering member, F indicates a tensile force of the covering member, which acts in a direction parallel to the side having the length L.
摘要:
An optical packaged body capable of preventing generation of a wrinkle, deflection, and warpage, capable of being thinned is provided. The optical package body includes a support medium and a packaging film that covers the support medium in a state of being applied with shrinkage force. The packaging film has an optical function section that acts on light from a light source in at least one of a first region into which the light from the light source enters and a second region from which the light from the light source is emitted after passing through the optical packaged body when the light source is arranged on one face side of the optical packaged body.
摘要:
An illuminating device capable of decreasing not only in-plane luminance unevenness in the front face direction but also in-plane luminance unevenness when viewed from a diagonal direction is provided. Where an occupancy ratio of a return light generation section in which light from respective linear light sources vertically entering a light incident surface of an optical sheet is entirely reflected by a surface of a convex section and return light oriented toward a reflecting plate is generated out of a first region R1 when the optical sheet is viewed from the normal line direction of a face is K1; and where an occupancy ratio of a return light generation section in which light from the respective linear light sources vertically entering the light incident surface of the optical sheet is entirely reflected by a surface of convex sections and return light oriented toward the reflecting plate is generated out of a second region when the optical sheet is viewed from the normal line direction of the face is K2, and K1 is larger than K2.
摘要:
An optical sheet stack body includes two optical sheets disposed to overlap a plurality of point light sources arranged in a first direction and arranged in a second direction crossing the first direction. The optical sheets are disposed so that a long-side direction of the optical sheet crosses the first and second directions at an angle other than right angle. A first optical sheet disposed on the point light source side has a plurality of first three-dimensional structures extending in a direction parallel to or almost parallel to the first direction. A second optical sheet disposed on the side opposite to the point light source has a plurality of second three-dimensional structures extending in a direction parallel to or almost parallel to the second direction. The second three-dimensional structure has a shape by which return light is generated from normal incident light more than the first three-dimensional structure.
摘要:
An optical element laminate is provided which, while an increase in thickness of a liquid crystal display device is suppressed, improves insufficient rigidity of an optical element and, in addition, which does not degrade display characteristics of the liquid crystal display device. The optical element laminate includes a plate-shaped support member having a first primary surface and a second primary surface and an optical element which is laminated on at least one of the first primary surface and the second primary surface of the support member and, in addition, which has a film shape or a sheet shape. The periphery of the laminated optical element is at least bonded to facing two sides of the support member, the optical element and the support member are placed in close contact with each other, and a thickness t of the support member, a length L of the support member, and a tensile force F of the optical element satisfy the relational expression of 0≦F≦1.65×104×t/L in an environment at a temperature of 70° C.
摘要:
An optical packaged body capable of preventing generation of a wrinkle, deflection, and warpage, and capable of being thinned is provided. The optical packaged body includes a support medium and a packaging film that covers the support medium in a state of being applied with shrinkage force. The packaging film has an optical function section that acts on light from a light source in at least one of a first region into which the light from the light source enters and a second region from which the light from the light source is emitted after passing through the optical packaged body when the light source is arranged on one face side of the optical packaged body.
摘要:
A diffusion plate includes a base body including a plurality of convex portions formed on a principal surface of the base body. An angle of inclination of the convex portions at a base of the convex portions ranges from 38° to 42°. Also, a ratio R/Cp between a curvature R of a summit of the convex portions and a pitch Cp between adjacent convex portions is 0.0014
摘要:
An illuminating apparatus is provided and includes a plurality of point light sources in one plane and a first optical sheet and a second optical sheet overlapped in a region facing the plurality of point light sources. The plurality of point light sources are arranged in a first direction and also arranged in a second direction orthogonal to the first direction. The first optical sheet has a plurality of first three-dimensional structures extending in a direction parallel to the first direction and arranged in a direction parallel to the second direction. The second optical sheet has a plurality of second three-dimensional structures extending in a direction parallel to the second direction and arranged in a direction parallel to the first direction. Each of the second three-dimensional structures has a shape which generates a larger amount of return light from normal incident light as compared with the first three-dimensional structures.
摘要:
An illumination unit includes: a light modulation layer disposed in a gap between a first transparent substrate and a second transparent substrate, and exhibiting a scattering property or transparency with respect to light from a light source, depending on magnitude of an electric field; and an electrode generating an electric field in the light modulation layer, when a voltage is applied thereto, in which the light modulation layer generates a plurality of strip-like illumination light beams extending in a direction intersecting with a first end surface of the first or second transparent substrate with use of light from the light source, when an electric field for a three-dimensional display mode is applied from the electrode to the light modulation layer, and a light emission area per unit area of each of the strip-like illumination light beams varies with a distance from the light source.