摘要:
The present invention provides a solid electrolyte type fuel cell that can control a cross-over, and implements the high fuel efficiency and the high output of the fuel cell. A substance is dissolved to a fuel 124, and does not permeate a solid polymeric electrolyte film 114. Because of this, on an interface between the solid polymeric electrolyte film 114 and the fuel 124 in a fuel electrode 102, an osmotic pressure in a direction from an oxide agent electrode 108 to a fuel electrode 102 is generated. Because of this, the water movement from the fuel electrode 102 side to the oxidizing agent electrode 108 side is controlled, and the cross-over of the fuel is controllable.
摘要:
A liquid fuel for a fuel cell comprises an organic compound and at least one kind of anti foaming agent. A catalyst electrode is capable of, when used for a fuel cell, increasing in an effective surface area of a fuel electrode and increasing in an output power of the fuel cell, by suppressing adsorption onto the surface of the electrode of an air which is a by-product produced at the fuel electrode as well as by quickly removing the foamed air which is once adsorbed thereto.
摘要:
The present invention provides a fuel cell system capable of supplying a stable power. In a fuel cell system, a plurality of fuel cell groups which supply a power to an external load are mutually electrically connected in series, as well as electrically connected to the external load. At least one fuel cell group is selected out of the plurality of fuel cell groups, and the selected fuel cell group is electrically disconnected from the external load.
摘要:
An adhesive layer 3 is disposed between a carbon particle 2 and a catalyst substance 1 of a catalyst-supporting particle for a fuel cell containing the carbon particle 2 and the catalyst substance 1. Thereby, the catalyst-supporting particle for fuel cell can be obtained in which a contact resistance between the catalyst substance and the carbon particle supporting the same is lower, and the aggregation of the catalyst substance is suppressed. A catalyst electrode for a fuel cell and the fuel cell using the above particle have a higher output power and an excellent durability.
摘要:
For the purpose of efficiently discharging CO2 generated therein while increasing the fuel utilization efficiency, a fuel cell comprises a solid polymer electrolyte membrane, a cathode arranged in contact with one side of the solid polymer electrolyte membrane, an anode arranged in contact with the other side of the solid polymer electrolyte membrane, a cathode collector and an anode collector respectively arranged in contact with the cathode and anode, a sealing member arranged in the rim of the solid polymer electrolyte membrane and sandwiched between the solid polymer electrolyte membrane and the anode collector, a fuel supply controlling membrane for vaporizing a liquid fuel and supplying the vaporized fuel to the anode, and a discharging unit for discharging a product produced by electrical reaction at the anode to the outside. An air vent formed in the sealing member serves as the discharging unit.
摘要:
The present invention provides a catalyst electrode and a manufacturing method of the same. When the catalyst electrode is used for a fuel cell, it is capable of suppressing an air, which is a by-product generated at a fuel electrode on a surface of the electrode, and quickly removing the adsorbed bubble-like air. Accordingly, the catalyst electrode is capable of increasing an effective catalyst surface of the fuel electrode and enhancing an output power of the fuel cell. Moreover, the present invention provides fuel cell and a manufacturing method of the same. The fuel cell is capable of suppressing an air, which is a by-product generated at the fuel electrode on the surface of the electrode and quickly removing the adsorbed bubble-like air. Accordingly, the fuel cell is capable of increasing an effective catalyst surface of the fuel electrode and enhancing an output power thereof. In a catalyst electrode for a fuel cell provided with a substrate and a catalyst layer which is formed on the substrate and which contains a carbon particle carrying a catalyst and a solid polymer electrolyte, the substrate or the catalyst layer contains one or more kinds of anti-foaming agent.
摘要:
The present invention provides a fuel cell which is small-sized and light-weight for mounting in a mobile device, and has a high output-density. A current-collector 421 of a fuel electrode (or a current-collector 423 of an oxidizer electrode) is bonded to a substrate 104 (or a substrate 110) of a fuel electrode 102 (or an oxidizer electrode 108) in a fuel cell 100, rendering the current-collector 421 (or the current-collector 423) to be thin and light-weight, and making it no longer necessary to use an end plate and a fastener. Fuel or oxidizer is supplied directly to a surface of the current-collector 421 or 423.
摘要:
An adhesion layer containing a second solid polymer electrolyte is disposed between a solid polymer electrolyte membrane and a fuel electrode and/or an oxidant electrode containing a first solid polymer electrolyte and a catalyst substance. The solid polymer electrolyte membrane and the adhesion layer are made of the same solid polymer electrolyte. In this manner, the adhesion at the interface between the electrode surface and the solid polymer electrolyte membrane is enhanced to implement the elevation of the cell characteristics and the elevation of the reliability of the cell.
摘要:
A liquid fuel supply type fuel cell is provided in which water present in the oxidizer electrode is promptly removed and evaporated, thereby achieving high output. A fuel cell electrode and methods for manufacturing the same are also provided. In a fuel cell, a base material is provided with a hydrophobic layer on the surface in contact with a catalyst layer for discharging water promptly, and a hydrophilic layer from the hydrophobic layer towards the outside of the cell for evaporating water which has passed through the hydrophobic layer from the surface.
摘要:
An intermediate layer (161) is formed between a catalyst layer (112) and a solid polymer electrolyte membrane (114). The intermediate layer (161) contains a protonic acid group-containing aromatic polyether ketone and catalyst particles.