Abstract:
Using a first access node, a set of wireless devices are communicated with using a first frame configuration. The communication using the first frame configuration meets a first throughput threshold criteria for both a first and second subsets of the wireless devices A second frame configuration having a second ratio of uplink subframes to downlink subframes is selected. Based on the selection of the second frame configuration, a second access node is used concurrently with the first access node to communicate with the second subset of wireless devices using the second frame configuration.
Abstract:
Systems and methods are described for scheduling transmission from an access node. Network conditions in a communication network comprising an access node may be monitored. A scheduling algorithm may be selected for the access node based on the monitored network conditions. Data transmissions may be scheduled from the access node based on the selected scheduling algorithm. And data may be transmitted from the access node to wireless devices based on the transmission schedule.
Abstract:
Systems and methods are described for scheduling wireless transmissions from an access node based on service provider. Data may be communicated between an access node and a plurality of wireless devices, wherein each of the plurality of wireless devices uses one of a first service provider and a second service provider to communicate with an access node. Transmissions may then be scheduled from the access node to the plurality of wireless devices based on a provider priority for the service providers and a backhaul congestion for each of the service providers.
Abstract:
Systems and methods are described for determining a subframe configuration for an access node based on coverage. An access node may communicate with wireless devices using a subframe configuration, however there may be a plurality of subframe configuration options. A utility function may be calculated for each of the plurality of subframe configurations based on, for example, a coverage for each subframe configuration and a number of wireless devices serviced by each subframe configuration. The utility function may provide an indication of a subframe configuration's value to the wireless system based on considerations such as coverage over wireless devices and signal quality for the covered wireless devices. The subframe configuration with the greatest utility function may then be selected to be used for communication between the access node and wireless devices.
Abstract:
Video is multicast to a group of wireless devices as a series of video segment files containing the video frame data for a period of the video stream. After receiving a video segment file, the wireless devices report about the quality of their reception of the video segment. If a threshold percentage (or number) of wireless devices report they experienced poor reception of a video segment, the number of subframes (i.e., transmission time intervals) used in a frame to multicast the video is increased. In other words, if the number of wireless devices that report they experienced poor reception of a video segment is higher than some threshold, the number of subframes allocated to redundantly transmit the streaming video data is increased.
Abstract:
Systems and methods are described for configuring device to device communication. Communication information may be received at an access node identifying at least two wireless devices comprising a device to device communication group. NACK messages may be received from a plurality of wireless devices proximate to the communication group. Data may be retransmitted to the plurality of wireless devices proximate to the communication group based on the received NACK messages, wherein the at least two wireless device comprising the communication group perform device to device communication based on the resources used for retransmission.
Abstract:
Systems and methods are described for determining a transmission scheme for a broadcast. Channel quality indicators may be tracked for a plurality of wireless devices. An average channel quality indicator may then be calculated based on the tracking for each of the plurality of wireless devices that subscribes to a broadcast transmission. A transmission scheme for the broadcast transmission may then be determined based on the average channel quality indicators, the transmission scheme comprising at least a modulation and coding scheme for the broadcast transmission. A set of access nodes may then be instructed to transmit the broadcast using the determined transmission scheme.
Abstract:
Systems and methods are described for determining a broadcast transmission scheme for an area. Channel quality indicators may be received from a plurality of wireless devices. For each of the plurality of wireless devices, a location may be determined. A geographic area may be classified as a first broadcast classification based on the channel quality indicators received from wireless devices that comprise a location proximate to the geographic area. A transmission scheme may be determined for a broadcast transmission to wireless devices proximate to the geographic area based on the first broadcast classification, where the transmission scheme may comprise a least a modulation and coding scheme. One or more access nodes may then be instructed to broadcast using the determined transmission scheme for the geographic area.