Abstract:
An integrated circuit that asymmetrically shields a signal to increase decoupling capacitance is provided. The signal is asymmetrically shielded based on a probability of the signal being at a specific value. Further, a computer system that uses asymmetrically shielding to increase performance is provided. Further, a method for increasing an amount of implicit decoupling capacitance on a circuit through asymmetric shielding is provided. Further, a method to increase component performance by increasing implicit decoupling capacitance is provided.
Abstract:
A decoupling capacitor assignment technique that increases decoupling capacitance without violating a leakage power constraint of an integrated circuit is provided. The decoupling capacitor assignment technique selectively replaces decoupling capacitors associated with high driver decoupling capacitance need to available decoupling capacitance ratios with thin-oxide decoupling capacitors such that decoupling capacitance is increased and the leakage power constraint is met.
Abstract:
A current crowding reduction technique involving the uniform displacement of vias around a bump is provided. By uniformly arranging vias around the bump on an integrated circuit, current can uniformly flow to and from the bump, effectively leading to reduced current density around the bump. Further, a method for reducing current crowding around a bump using an uniform arrangement of vias around the bump is provided.
Abstract:
A technique for optimizing decoupling capacitance on an integrated circuit while meeting leakage power constraints of the integrated circuit is provided. The technique involves the formulation of a linear optimization problem using physical characteristics and constraints of the integrated circuit, where a linear solution to the linear optimization problem yields an optimal decoupling capacitance presence on the integrated circuit.
Abstract:
A method for preferentially shielding a signal to increase implicit decoupling capacitance is provided. The signal is preferentially shielded by using a probability of the signal being at a specific value to determine where to route the signal. Further, an integrated circuit that preferentially shields a signal to increase decoupling capacitance by 2using a probability of the signal being at a specific value to determine where to route the signal. Further, a computer system for preferentially shielding a signal to increase decoupling capacitance by using a probability of the signal being at a specific value to determine where to route the signal. Further, a computer readable medium having executable instructions for preferentially shielding a signal to increase implicit decoupling capacitance by using a probability of the signal being at a specific value to determine where to route the signal.
Abstract:
A 60 degree bump placement layout for an integrated circuit power grid is provided. This layout improves integrated circuit performance and reliability and gives an integrated circuit designer added flexibility and uniformity in designing the integrated circuit. Further, a patterned bump array for a top metal layer of an integrated circuit having a plurality of 60 degree bump placement structures is provided.
Abstract:
A method for improving integrated circuit by using a patterned bump layout on a layer of the integrated circuit is provided. The method creates various bump structures by varying an angle between a line from a reference bump to a first bump and a line from the reference bump to a second bump. By varying the angle, a designer may generate a particular bump structure that meets the needs of a particular design. Further, a particular bump placement may be repeated across all or a portion of the metal layer in order to create a patterned bump layout.
Abstract:
A method and apparatus for improving the timing accuracy of an integrated circuit through region-based voltage drop budgets is provided. Further, a method for performing timing analysis on an integrated circuit partitioned into voltage drop regions is provided. During the timing analysis, a set of logic paths segments in each voltage drop region is tested to ensure that the integrated circuit meets a set of predefined timing requirements. Logic path segments that reside in different voltage drop regions are tested using a supply voltage inputted by the respective voltage drop region.
Abstract:
A technique that uses active shields to reduce clock skew is provided. The technique uses a shield wire for shielding the signal wire, a driver stage for driving a leading clock signal on the shielding wire, and a signal wire buffer for driving a lagging clock signal on the signal wire, where the leading clock signal is driven onto the first shield wire a phase difference before the lagging clock signal is driven onto the signal wire.
Abstract:
A negative impedance device that accelerates signal transitions on a signal is provided. The negative impedance device is highly responsive to high to low and low to high transitions on the signal, and when one of these types of transitions begins to occur on the signal, the negative impedance device senses the transition and quickly drives the signal to the intended value before a point in time when the signal would have reached the intended value had the negative impedance device not been used. Further, a signal transition accelerator design that reduces signal rise and fall times is provided. Further, a method for accelerating a signal transition is provided.