Abstract:
Embodiments related to the conversion of DC power to AC power are disclosed. For example, one disclosed embodiment provides a power conversion system, comprising a plurality of direct current (DC) power sources, a plurality of power output circuits connected to one another in a parallel arrangement, each power output circuit being connected to a corresponding DC power source to receive power from the corresponding DC power source and to selectively discharge power received from the corresponding DC power source, a power combiner configured to combine power received from the plurality of power output circuits to form a combined power signal, an output stage configured to convert the combined power signal into an AC signal or a DC signal, and a controller in electrical communication with each power outlet circuit and the power combiner to control the output of power by the power converter.
Abstract:
A semiconductor device and method for its fabrication are described. An isolation body may be formed prior to formation of an active region. In one embodiment, the isolation body is void-free.
Abstract:
A method comprising running an error correction code on data and storing the data and the result of the error correction code in memory, running an error correction code on the data when it is read from the memory, comparing the results of the error correction codes on the data from before and after the memory, correcting errors when the comparator determines a difference in the results of the error correction codes and lowering the operating voltage of the memory array while using the error correction.
Abstract:
Various methods for forming a layer of strained silicon in a channel region of a device and devices constructed according to the disclosed methods. In one embodiment, a strain-inducing layer is formed, a relaxed layer is formed on the strain-inducing layer, a portion of the strain-inducing layer is removed, which allows the strain-inducing layer to relax and strain the relaxed layer.
Abstract:
Various methods for forming a layer of strained silicon in a channel region of a device and devices constructed according to the disclosed methods. In one embodiment, a strain-inducing layer is formed, a relaxed layer is formed on the strain-inducing layer, a portion of the strain-inducing layer is removed, which allows the strain-inducing layer to relax and strain the relaxed layer.
Abstract:
An improved MOS transistor and method for making it are described. The MOS transistor's source and drain have a first conductivity type and are separated from each other by a first region having a second conductivity type opposite to the first conductivity type. A second region, also having the second conductivity type, is formed adjacent to the drain and is separated from the first region by the drain.
Abstract:
Metal Oxide Semiconductor Field Effect Transistors (MOSFET) are disclosed. One MOSFET includes, a substrate having a well of a first conductivity type. The MOSFET also includes source and drain regions, of a second conductivity type, formed in the well arranged apart from each other. Moreover, the MOSFET includes a first region, of a second conductivity type, formed in the well near the drain region. The first region has a low doping. Furthermore, the MOSFET includes a second region of a second conductivity type, formed near the source region. The second region has a doping substantially higher than the doping of the first region. A second MOSFET includes a substrate having a well of a first conductivity type and source and drain regions, of a second conductivity type, formed in the well apart from each other. Moreover, the MOSFET includes a drain extension region of the second conductivity type, formed in the well near the drain region. Furthermore, the MOSFET includes a source extension region, of the second conductivity type, formed in the well near the source region. The source extension region is doped more heavily than the drain extension region. The source extension region extends deeper in the well than the drain extension region.
Abstract:
The present invention is a semiconductor device having and a method for forming wells by growing an epitaxial silicon layer wherein the epitaxial silicon layer has at least three silicon sublayers. The first sublayer is highly doped, the second sublayer is less doped, and the third sublayer is also highly doped. The use of the epitaxially grown wells allows for the placement of high dopant concentrations in regions of the well where electrical isolation is an issue and the placement of lower doped concentrations in regions of the well where electrical isolation is not as great an issue in order to help reduce the problem of parasitic capacitance.
Abstract:
Embodiments related to the conversion of DC power to AC power are disclosed. For example, one disclosed embodiment provides a power conversion system, comprising a plurality of direct current (DC) power sources, a plurality of power output circuits connected to one another in a parallel arrangement, each power output circuit being connected to a corresponding DC power source to receive power from the corresponding DC power source and to selectively discharge power received from the corresponding DC power source, a power combiner configured to combine power received from the plurality of power output circuits to form a combined power signal, an output stage configured to convert the combined power signal into an AC signal or a DC signal, and a controller in electrical communication with each power outlet circuit and the power combiner to control the output of power by the power converter.
Abstract:
A method comprising running an error correction code on data and storing the data and the result of the error correction code in memory, running an error correction code on the data when it is read from the memory, comparing the results of the error correction codes on the data from before and after the memory, correcting errors when the comparator determines a difference in the results of the error correction codes and lowering the operating voltage of the memory array while using the error correction.