Abstract:
A variable-crown roll is disclosed, which comprises a curved arbor, and a plurality of antifriction bearings which are mounted on said arbor, said bearings being asymmetrically disposed with respect to the lengthwise center of said arbor, and bearings on one side of the lengthwise center of said arbor being symmetric with respect to said bearings on the other side of the lengthwise center.
Abstract:
A silicon carbide material for low-melting point fusion metal composed of recrystallization silicon carbide or silicon nitride coupled silicon carbide and containing free silicon and silicon oxide in a total amount of 5% by weight or below. More preferably, the silicon carbide material is formed on the surface with a film of vapor phase growth silicon carbide or silicon nitride, and on this film or in place of this film silicon nitride and/or boron nitride is coated.
Abstract:
A semiconductor device includes: a semiconductor element provided on a semiconductor layer; a light-blocking wall provided around the semiconductor element; and a wiring layer electrically coupled to the semiconductor element and extended from an aperture not having the light-blocking wall to an outside of the light-blocking wall; wherein the wiring layer has a pattern containing a first section positioned in the aperture and a second section which has a width not narrower than a width of the aperture by providing a branched portion intersecting with an extension direction of the wiring layer; and wherein a surface of the branched portion facing outside of the light-blocking wall includes thereon a convex part.
Abstract:
A solid-state imaging device is provided. The solid-state imaging device includes a plurality of arrayed pixels, an optical inner filter layer, and an inner-layer lens. Each of the plurality of arrayed pixels includes a photoelectric conversion portion and a pixel transistor. The optical inner filter layer is configured to block infrared light and faces a light-receiving surface of the photoelectric conversion portion of a desired pixel among the arrayed pixels. The inner-layer lens is formed below the optical inner filter layer.
Abstract:
Crystals of 5-[2-amino-4-(2-furyl)pyrimidin-5-yl]-1-methylpyridin-2(1H)-one having a diffraction peak at a diffraction angle (2θ±0.2°) of 9.7° and/or 21.9° in a powder X-ray diffraction are suitable for an active ingredient of a preventing and therapeutic agent for diseases such as constipation. Crystals of 5-[2-amino-4-(2-furyl)pyrimidin-5-yl]-1-methylpyridin-2(1H)-one hydrate and amorphous 5-[2-amino-4-(2-furyl)pyrimidin-5-yl]-1-methylpyridin-2(1H)-one hydrate are also suitable for an active ingredient of a preventing and therapeutic agent for diseases such as constipation.
Abstract:
A semiconductor device includes: a semiconductor element provided on a semiconductor layer; a light-blocking wall provided around the semiconductor element; and a wiring layer electrically coupled to the semiconductor element and extended from an aperture not having the light-blocking wall to an outside of the light-blocking wall; wherein the wiring layer has a pattern containing a first section positioned in the aperture and a second section which has a width not narrower than a width of the aperture by providing a branched portion intersecting with an extension direction of the wiring layer; and wherein a surface of the branched portion facing outside of the light-blocking wall includes thereon a convex part.
Abstract:
Crystals of 5-[2-amino-4-(2-furyl)pyrimidin-5-yl]-1-methylpyridin-2(1H)-one having a diffraction peak at a diffraction angle (2θ±0.2°) of 9.7° and/or 21.9° in a powder X-ray diffraction are suitable for an active ingredient of a preventing and therapeutic agent for diseases such as constipation. Crystals of 5-[2-amino-4-(2-furyl)pyrimidin-5-yl]-1-methylpyridin-2(1H)-one hydrate and amorphous 5-[2-amino-4-(2-furyl)pyrimidin-5-yl]-1-methylpyridin-2(1H)-one hydrate are also suitable for an active ingredient of a preventing and therapeutic agent for diseases such as constipation.
Abstract:
A semiconductor device comprising: a first light shielded region including a first semiconductor element, the first light shielded region being defined by a first light shielding wall provided in the periphery thereof; a second light shielded region including a second semiconductor element, the second light shielded region being defined by a second light shielding wall provided in the periphery thereof and being provided in a position adjacent to the first light shielded region; a first opening provided in the first light shielding wall; a second opening provided in the second light shielding wall and positioned facing to the first opening; a first wiring layer coupled with the first semiconductor element and brought out to the outside of the first light shielded region from the first opening; a second wiring layer coupled with the second semiconductor element and brought out to the outside of the second light shielded region from the second opening; and a light shielding film provided at least above a region sandwiched between the first light shielded region and the second light shielded region.
Abstract:
A nonvolatile semiconductor memory that reduces disturbing voltage to a non-selected memory cell during a write operation. The nonvolatile semiconductor memory according to exemplary embodiments of the present invention include a memory cell array, a word line control circuit, and a line control circuit. The memory cell array includes a plurality of memory cells provided in matrix form, a plurality of word lines, a plurality of bit lines, and a plurality of source lines. The word line control circuit controls the plurality of word lines. The line control circuit controls the plurality of bit lines and the plurality of source lines. Each of the memory cells includes a gate electrode coupled to the word lines, a first impurity region, a second impurity region, and an electron trap region provided in between the gate electrode and a substrate. The electron trap region is provided at least on the first impurity region side of the first impurity region side and the second impurity region side. During a write operation in a selected memory cell, the word line control circuit supplies a selection voltage to a selected word line coupled to the selected memory cell, and also supplies an erase-error preventing voltage to a non-selected word line.