摘要:
An MEA having an MEA body part 5C; a frame 6 made of a plate-like thermoplastic resin; and gaskets 7 formed on opposed surfaces of the frame 6 so as to hold the frame 6 between. The gaskets 7 each have an annular portion 7A that is annularly formed so as to extend along the inner periphery of the frame 6 and elongated portions 7B1 to 7B8 that extend from the annular portion 7A and come into contact with the side faces of an associated electrode layer 5C after passing over the inner periphery of the frame 6 and a peripheral region 5D of a polymer electrolyte membrane.
摘要:
In an electrode-membrane-frame assembly production method, a principal part is formed by an electrolyte membrane, first and second catalyst layers and first and second gas diffusion layers, with the first and second gas diffusion layers arranged with their outer circumferences at different positions. The principal part is arranged in a molding die with a circumferential region of the principal part disposed on a flat region of a primary molded body. A circumferential portion of one of the gas diffusion layers is arranged to oppose a flat region of the primary molded body so that the membrane is interposed between the circumferential portion and the flat region. Subsequently, a secondary molded body is formed to integrate with the primary molded body and the principal part.
摘要:
A fuel cell separator having a turn portion of a serpentine-shaped reaction gas passage region. In the turn portion, a recessed portion is defined by an outer end of the turn portion and oblique boundaries between the recessed portion and a pair of passage groove group. In the turn portion, a plurality of protrusions, which vertically extend from a bottom face of the recessed portion and are arranged in an island form, are disposed such that one or more protrusions form a plurality of columns lined up and spaced apart from each other with a gap in a direction in which the outer end extends and one or more protrusions form a plurality of rows lined up and spaced apart from each other with a gap in a direction perpendicular to the direction in which the outer end extends.
摘要:
A polymer electrolyte fuel cell is provided with a fuel cell stack assembled by sandwiching a plurality of stacked single cell modules with a plurality of fastening members through a pair of end plates. The fuel cell includes a first elastic member arranged between the fastening member and the end plate and a plurality of second elastic members arranged between the end plate and the end of the fuel cell stack. Each of the second elastic members is arranged on the surface of the end plate corresponding to the electrode portion of a membrane electrode assembly in each of the single cell module, and each of the first elastic members is arranged on the surface of the end plate corresponding to a seal member arrangement region in which the seal member is arranged between the periphery of the membrane electrode assembly and a pair of separator plates in each single cell module.
摘要:
In a solid polyelectrolyte fuel cell, with a frame including a frame body main part placed along a peripheral edge portion of a membrane, a plurality of first retaining portions which are arrayed so as to protrude from an inner edge of the frame body main part and which retain the front surface side of the membrane, and a plurality of second retaining portions which are arrayed so as to protrude from the inner edge of the frame body main part and which retain the back surface side of the membrane, the first retaining portions and the second retaining portions are so arrayed that retaining positions of the membrane by the first retaining portions and retaining positions of the membrane by the second retaining portions are alternately placed. A plurality of front-surface side elastic members are placed on the front surface of the membrane between neighboring ones of the first retaining portions while a plurality of back-surface side elastic members are placed on the back surface of the membrane between neighboring ones of the second retaining portions.
摘要:
A fuel cell using metal separators in which reactive gas leakage is reliably suppressed without requiring excessive fastening force, while employing a simple structure. The present invention is a solid polymer unit fuel cell having a frame holding an MEA and metal separators, in which 1) the central part of a separator faces an electrode and has linear a channel formed therein, and the peripheral part of a separator is a flat structure having a manifold hole; 2) the frame holding an MEA has a sealant that is provided around the respective electrodes, is in contact with a rib at the boundary of the central part and peripheral part of a separator, and regulates the flow of reactive gas; and 3) contact surfaces of the sealant provided around an electrode and ribs at the boundary between the central part and peripheral part of a separator, are respectively inclined with respect to the stacking direction from the frame toward the separator.
摘要:
There is provided a film electrode assembly for a fuel cell capable of preventing a polymer electrolyte film from being exposed. The film electrode assembly includes: a main body portion of a film electrode assembly having a polymer electrolyte film, and a pair of electrode layers having catalyst layers placed on the two surfaces of the polymer electrolyte film on the inner side from the peripheral edge portion thereof and diffusion layers each having a peripheral edge protruding from the catalyst layer, which are laminated on one another, with a gap being formed between the protruding portion of the diffusion layer and the peripheral edge portion of the polymer electrolyte film; a frame member that sandwiches the peripheral edge portion of the polymer electrolyte film between the paired electrode layers with a gap therebetween, and is formed so as to surround an outer edge of the polymer electrolyte film; and gaskets made of a thermoplastic resin, which are placed on the two surfaces of the frame member. Each gasket includes an annular portion that covers the peripheral edge portion of the main body portion of the film electrode assembly over the entire circumference thereof along the inner edge of the frame member and a gap filling portion that fills the gap.
摘要:
A MEA-frame assembly is arranged in a mold for injection molding to form a first flow passage arranged so as to extend along the outer periphery of an electrode between the outer periphery of the electrode and the inner periphery of a frame, a second flow passage arranged so as to extend along an inner elastic member between the inner periphery and outer periphery of the frame and a plurality of connecting flow passages which communicate the first flow passage with the second flow passage. An elastic resin is injected into the first flow passage to fill the first flow passage with the elastic resin and to fill the second flow passage with the elastic resin through each of the communicating flow passages, thereby an elastic member which hermetically seals the space between the MEA-frame assembly and the separator is integrally formed.
摘要:
Methods are provided for easily obtaining a high performance electrode without using an organic solvent for making an ink of an electrode catalyst or a surfactant for making an ink of a water repellent carbon material. The methods of manufacturing an electrode for a polymer electrolyte fuel cell comprise (a) a step of adhering a polymer electrolyte or a water repellent material to fine electrically conductive particles, and granulating the electrically conductive particles to obtain multinary granules, and (b) a step of depositing the multinary granules in layer form to obtain a catalyst layer or a water repellent layer of an electrode. Apparatus for manufacturing the electrodes, as well as polymer electrolyte fuel cells using the electrodes are also provided.
摘要:
A fuel cell separator (2) of the present invention has a turn portion of a serpentine-shaped reaction gas passage region (101). In the turn portion, a recessed portion (28) is defined by an outer end (28a) of the turn portion and oblique boundaries between the recessed portion (28) and a pair of passage groove group. In the turn portion, a plurality of protrusions (27), which vertically extend from a bottom face of the recessed portion (28) and are arranged in an island form, are disposed such that one or more protrusions (27) form a plurality of columns lined up and spaced apart from each other with a gap in a direction in which the outer end (28a) extends and one or more protrusions (27) form a plurality of rows lined up and spaced apart from each other with a gap in a direction perpendicular to the direction in which the outer end (28a) extends; and the plurality of protrusions (27) are configured such that flow of the reaction gas is guided by protrusions (27) forming one row in the direction in which the outer end (28a) extends and is disturbed by protrusions forming a row adjacent the one row.