Abstract:
In an illustrative embodiment of the present invention, a reference signal including pilot information is transmitted from a base station to one or multiple field units over a pilot channel. A message is also sent to the field units over a paging channel to indicate an effective radiated power level at which the reference signal is transmitted on the pilot channel. Based on a received power level of the reference signal at a field unit and the effective radiated power level of the reference signal, a forward path loss is estimated at the field unit for the forward link between the base station and field unit. Assuming the path loss in the reverse link is approximately the same as the estimated forward link path loss, the field unit can transmit, a reply message in the reverse link so that the base station generally receives a message at-a desired power level.
Abstract:
An antenna with a first conductive element positioned in an lower region of the antenna, and a second conductive element positioned above the first conductive element in an upper region of the antenna. One of the conductive elements is an active element that transmits and receives signals, while the other element is a ground element.
Abstract:
A directive antenna includes plural antenna elements in an antenna assemblage. A feed network connected to the antenna elements includes at least one switch to select a state of one of the antenna elements to be in an active state in response to a control signal. The other antenna elements are in a passive state, electrically coupled to an impedance to be in a reflective mode. The antenna elements in the passive state are electromagnetically coupled to the active antenna element, allowing the antenna assemblage to directionally transmit and receive signals. The directive antenna may further include an assisting switch associated with each antenna element to assist coupling the antenna elements, while in the passive state, to the respective impedances. The antenna assemblage may be circular for a 360null discrete scan in N directions, where N is the number of antenna elements. The directive antenna is suitable for use in a high data rate network having greater than 50 kbits per second data transfer rates, where the high data rate network may use CDMA2000, 1 eV-DO, 1Extreme, or other such protocol.
Abstract:
A technique for efficient implementation of pilot signals on a reverse link in a wireless communication system. An access channel is defined for the reverse link such that within each frame, or epoch, a portion is dedicated to sending only pilot symbols. Another portion of the frame is reserved for sending mostly data symbols; however, within this second portion of the frame, additional pilot symbols are interleaved among the data symbols. The pilot symbol or preamble portion of the access channel frame allows for efficient acquisition of the access signal at the base station, while providing a timing reference for determining the effects of multipath fading. In particular, a pilot correlation filter provides a phase estimate from the pilot symbols in the preamble portion, which is then used to decode the data symbols in the payload portion. An access acquisition portion of the receiver uses the phase estimates provided by the pilot correlation filter to process the output of a data symbol correlation filter. The additional pilot symbols embedded in the payload portion are used in a cross product operation to further resolve the effects of multipath fading.
Abstract:
A service option overlay for a CDMA wireless communication in which multiple allocatable subchannels are defined on a reverse link by assigning different code phases of a given long pseudonoise (PN) code to each subchannel. The instantaneous bandwidth needs of each on-line subscriber unit are then met by dynamically allocating none, one, or multiple subchannels on an as needed basis for each network layer connection. The system efficiently provides a relatively large number of virtual physical connections between the subscriber units and the base stations on the reverse link for extended idle periods such as when computers connected to the subscriber units are powered on, but not presently actively sending or receiving data. These maintenance subchannels permit the base station and the subscriber units to remain in phase and time synchronism in an idle mode and also request additional channels. This in turn allows fast acquisition of additional subchannels as needed by allocating new code phase subchannels. Preferably, the code phases of the new channels are assigned according to a predetermined code phase relationship with respect to the code phase of the corresponding maintenance subchannel.
Abstract:
An antenna array that uses at least two passive antennas and one active antenna disposed above a ground plane, but electrically isolated from the ground plane, and a respective resonant strip positioned beneath each passive antenna. The passive antenna elements are positioned about the active element, and each of the at least two passive antenna elements is individually set to a reflective or a transmissive mode to change the characteristics of an input/output beam pattern of the antenna apparatus.
Abstract:
An antenna assembly includes at least two active or main radiating omni-directional antenna elements arranged with at least one beam control or passive antenna element used as a reflector. The beam control antenna element(s) may have multiple reactance elements that can electrically terminate it to adjust the input or output beam pattern(s) produced by the combination of the active antenna elements and the beam control antenna element(s). More specifically, the beam control antenna element(s) may be coupled to different terminating reactances to change beam characteristics, such as the directivity and angular beamwidth. Processing may be employed to select which terminating reactance to use. Consequently, the radiator pattern of the antenna can be more easily directed towards a specific target receiver/transmitter, reduce signal-to-noise interference levels, and/or increase gain by using Radio Frequency (RF), Intermediate Frequency (IF), or baseband processing. A Multiple-Input, Multiple-Output (MIMO) processing technique may be employed to operate the antenna assembly with simultaneous beam patterns.
Abstract:
In an illustrative embodiment of the present invention, a reference signal including pilot information is transmitted from a base station to one or multiple field units over a pilot channel. A message is also sent to the field units over a paging channel to indicate an effective radiated power level at which the reference signal is transmitted on the pilot channel. Based on a received power level of the reference signal at a field unit and the effective radiated power level of the reference signal, a forward path loss is estimated at the field unit for the forward link between the base station and field unit. Assuming the path loss in the reverse link is approximately the same as the estimated forward link path loss, the field unit can transmit a reply message in the reverse link so that the base station generally receives a message at a desired power level.
Abstract:
An adaptive antenna signal identification process to provide increased interference rejection in a wireless data network such as a wireless Local Area Network (LAN). The adaptive antenna is located at an access point and can be steered to various angle of arrival orientations with respect to received signals. Associated radio receiving equipment utilizes two distinct signal detection modes. In a first mode, the directional antenna array is set to have an omni-directional gain pattern. In this mode, certain identification parameters of an initial portion of a received signal are detected, such as a source identifier. If the received signal has not been previously detected, then the antenna array is scanned determine a direction setting that provides a best received signal metric. Once the best directional setting for the received signal, that setting is saved for future use in receiving the same signal. If the received signal has been previously detected, the system instead will steer the directional antenna to the last known best direction for reception for the particular detected signal. As further portions of the same signal are received, such as payload portions of a data frame, the directional antenna array can continue to scan potential new best angles. When the invention is deployed in a relay function, where messages received from a first node are to be forwarded to a second node, the recorded direction of its best reception is retrieved for the second node and used when the antenna array is used to transmit the signal to the second node. Storage of the best antenna angle for propagation to neighbor nodes can be handled by control functions in a manner that is analogous to other router lookup tables, such as being contained in a lookup table that stores IP addresses.
Abstract:
A packet data system such as a TCP/IP network transmits packets containing a variety of data types along links in the network. Packets are transmitted in a stream between nodes interconnected by the links, which conform to a transport layer protocol such as TCP, UDP, and RSTP, and include wireless links, which transmit packets using a radio frequency (RF) medium. Typical protocols, however, are usually developed to optimize throughput and minimize data error and loss over wired links, and do not lend themselves well to a wireless link. By examining the data in a packet, performance characteristics such as a port number are determined. The performance characteristics indicate the application type, and therefore, the data type, of the packets carried on the connection. Since certain data types, such as streaming audio and video, are more loss tolerant, determination of the data type is used to compute link control parameters for the wireless link that are optimal to the type of data being transmitted over the link.