Abstract:
A dielectric ceramic composition includes a main component of a perovskite type compound represented by a general formula of ABO3, in which A is an element in an A-site, B is an element in a B-site, and O is an oxygen element. A includes Ba. A further includes at least one of Ca and Sr. B includes Ti. A sintered-body lattice volume obtained by X-ray diffraction method is 64.33 Å3 or below.
Abstract:
Provided is a multilayer ceramic electronic device which is capable of preventing decrease of the specific permittivity and of showing less drop of capacitance, even when the dielectric grains constituting the dielectric layers become smaller for thinning of the dielectric layers, wherein Dg/Di≧1 is satisfied, in case that “Di” is an average grain size of the first dielectric grains constituting the dielectric layer in the capacitance region and “Dg” is an average grain size of the second dielectric grains in an exterior area.
Abstract:
A dielectric ceramic composition and a ceramic electric device having a dielectric layer composed of the dielectric ceramic composition including a main component having a perovskite crystal structure expressed by general formula ABO3, an oxide of Eu, an oxide of Ra (Sc, Er, Tm, Yb and Lu), an oxide of Rb (Y, Dy, Ho, Tb and Gd) and an oxide of Si, in which 0.075≦α≦0.5, 0.5≦β≦3, 1.0≦γ≦4, 1.5≦δ≦5, and 0.030≦α/δ≦0.250 where a content of an oxide of Eu is α mole, a content of the oxide of Ra is β mole, a content of the oxide of Rb is γ mole, and a content of the second sub-component is δ mole with respect to 100 moles of the main component.
Abstract:
The object of the present invention is to provide a multilayer ceramic electronic component having improved highly accelerated lifetime and specific permittivity. A multilayer ceramic electronic component comprising a multilayer body in which an internal electrode layer and a dielectric layer are stacked in alternating manner, wherein the dielectric layer comprises a dielectric ceramic composition having a main component expressed by a general formula ABO3 (A is Ba and the like, and B is Ti and the like) and a rare earth component R, a segregation phase including the rare earth component R exists in the dielectric layer, an area ratio of the segregation phases in a cross section along a stacking direction is 104 ppm to 961 ppm, and 96% or more of a total area of the segregation phases contact with the internal electrode layer.
Abstract:
A dielectric ceramic composition includes a main component of a perovskite type compound represented by a general formula of ABO3, in which A is an element in an A-site, B is an element in a B-site, and O is an oxygen element. A includes Ba. B includes Ti and Zr. A sintered-body lattice volume obtained by X-ray diffraction method is 64.50 Å3 or above.
Abstract:
A dielectric ceramic composition having good properties, particularly good IR property and high temperature accelerated lifetime, even under high electric field intensity. A dielectric ceramic composition having a main component made of a perovskite type compound expressed by a compositional formula of (Ba1-x-ySrxCay)m(Ti1-zZrz)O3 (note that, m, x, y, and z of the above compositional formula all represent molar ratios, and each satisfies 0.9
Abstract:
A dielectric composition contains major components that are an A-group containing major components that are at least two selected from the group consisting of Ba, Ca, and Sr and a B-group which contains a major component that is selected from Zr and Ti and which contains at least Zr. The dielectric composition contains an amorphous substance containing the A-group and the B-group and a crystalline substance containing the A-group and the B-group. In the dielectric composition, the inequality 0.5≦α≦1.5 holds, where α is the molar ratio of the A-group to the B-group.
Abstract:
A dielectric composition containing a crystalline phase represented by a general formula of Bi12SiO20 and a crystalline phase represented by a general formula of Bi2SiO5 as the main components. The dielectric composition contains preferably 5 mass % to 99 mass % of the Bi2SiO5 crystalline phase, and more preferably 30 mass % to 99 mass %.
Abstract:
A dielectric composition includes main-phase particles each including a main component having a perovskite crystal structure represented by a general formula of ABO3. At least a part of the main-phase particles has a core-shell structure. The dielectric composition includes RA, RB, M, and Si. Each of A, B, RA, RB, and M is one or more elements selected from a specific element group. SRA/SRB>CRA/CRB is satisfied, where CRA is an RA content (mol %) to the main component in terms of RA2O3, and CRB is an RB content (mol %) to the main component in terms of RB2O3, in the dielectric composition, and SRA is an average RA content (mol %), and SRB is an average RB content (mol %), in a shell part of the core-shell structure.
Abstract:
An electronic component includes an element body having a functional layer and an internal electrode layer, and an external electrode formed on a surface of the element body and connected to the internal electrode layer electrically. The chlorine concentration of the element body of the electronic component is 10 ppm or less.