Abstract:
In described examples, an apparatus includes a physics cell and an electronic circuit. The physics cell includes an atomic chamber, a laser source, a modulator, a photodetector and a field coil. The electronic circuit includes a frequency synthesizer, a controller and a digital to analog converter.
Abstract:
Described examples include an integrated circuit including a receive portion to receive an encoded transmission on a line. The receive portion has: a wake mode in which the receiver is capable of receiving the encoded transmission; and a sleep mode in which the receiver is not capable of receiving the encoded transmission. A wakeup controller monitors the line for a wakeup signal and provides a signal to the receive portion to cause the receive portion to enter the wake mode when the wakeup controller receives the wakeup signal.
Abstract:
Isolation circuits for digital communications and methods to provide isolation for digital communications are disclosed. An example isolation circuit includes an isolation barrier, a burst encoder in a first circuit, and an edge pattern detector in a second circuit. The example isolation barrier electrically isolates the first circuit from the second circuit. The example burst encoder generates a first pattern in response to receiving a rising edge on an input signal and generates a second pattern in response to receiving a falling edge on the input signal. The example edge pattern detector detects the first pattern or the second pattern received from the burst encoder via the isolation barrier, sets an output signal at a first signal level in response to detecting the first pattern, and sets the output signal at a second signal level in response to detecting the second pattern.
Abstract:
A system is provided for transmitting sub-terahertz electro-magnetic radio frequency (RF) signals using a dielectric waveguide (DWG) having a dielectric core member surrounded by dielectric cladding. An RF transmitter is coupled to an antenna located on a first substrate, in which the antenna is adjacent an edge of the substrate. The first substrate is mounted on a second substrate. A conductive reflector plate is formed on the top surface of the second substrate. An end of the DWG is mounted on the second substrate over the reflector plate such that an exposed face of the core member at the end of the DWG is adjacent the antenna. The core member at the end of DWG forms an angle of inclination with the second substrate in which the angle is in a range of approximately 10-30 degrees.
Abstract:
A system is provided for transmitting sub-terahertz electro-magnetic radio frequency (RF) signals using a dielectric waveguide (DWG) having a dielectric core member surrounded by dielectric cladding. An RF transmitter is coupled to an antenna located on a first substrate, in which the antenna is adjacent an edge of the substrate. The first substrate is mounted on a second substrate. A conductive reflector plate is formed on the top surface of the second substrate. An end of the DWG is mounted on the second substrate over the reflector plate such that an exposed face of the core member at the end of the DWG is adjacent the antenna. The core member at the end of DWG forms an angle of inclination with the second substrate in which the angle is in a range of approximately 10-30 degrees.
Abstract:
Isolation circuits for digital communications and methods to provide isolation for digital communications are disclosed. An example isolation circuit includes an isolation barrier, a burst encoder in a first circuit, and an edge pattern detector in a second circuit. The example isolation barrier electrically isolates the first circuit from the second circuit. The example burst encoder generates a first pattern in response to receiving a rising edge on an input signal and generates a second pattern in response to receiving a falling edge on the input signal. The example edge pattern detector detects the first pattern or the second pattern received from the burst encoder via the isolation barrier, sets an output signal at a first signal level in response to detecting the first pattern, and sets the output signal at a second signal level in response to detecting the second pattern.
Abstract:
In an amplifier, a first stage receives a differential input voltage, which is formed by first and second input voltages, and outputs a first differential current in response thereto on first and second lines having respective first and second line voltages. A second stage receives the first and second line voltages and outputs a second differential current in response thereto on third and fourth lines having respective third and fourth line voltages. A transformer includes first and second coils. A first terminal of the first coil is coupled through a first resistor to the first line. A second terminal of the first coil is coupled through a second resistor to the second line. A first terminal of the second coil is coupled through a third resistor to the third line. A second terminal of the second coil is coupled through a fourth resistor to the fourth line.
Abstract:
Disclosed examples include digital isolator modules, isolation circuitry and low-loss multi-order bandpass filter circuits, including a capacitive coupled galvanic isolation circuit with first and second coupling capacitors individually including a first plate and a second plate, and a bond wire connecting the first plates of the coupling capacitors, a first circuit with a first inductor coupled to form a first resonant tank circuit with a first parasitic capacitor associated with the second plate of the first coupling capacitor, and a second circuit with a second inductor coupled to form a second resonant tank circuit with a second parasitic capacitor associated with the second plate of the second coupling capacitor.
Abstract:
A system is provided in which a set of modules each have a substrate on which is mounted a radio frequency (RF) transmitter and/or an RF receiver coupled to a near field communication (NFC) coupler located on the substrate. Each module has a housing that surrounds and encloses the substrate. The housing has a port region on a surface of the housing. Each module has a field confiner located between the NFC coupler and the port region on the housing configured to guide electromagnetic energy emanated from the NFC coupler through the port region to a port region of an adjacent module. The port region is offset laterally from the NFC coupler. The field confiner is skewed to provide a pathway between the NFC coupler and the port region.
Abstract:
Described examples include an integrated circuit including a receive portion to receive an encoded transmission on a line. The receive portion has: a wake mode in which the receiver is capable of receiving the encoded transmission; and a sleep mode in which the receiver is not capable of receiving the encoded transmission. A wakeup controller monitors the line for a wakeup signal and provides a signal to the receive portion to cause the receive portion to enter the wake mode when the wakeup controller receives the wakeup signal.