Abstract:
A Hall-effect sensor package includes and an IC die including a Hall-Effect element and a leadframe including leads on a first side providing a first field generating current (FGC) path including ≥1 first FGC input pin coupled by a reduced width first curved head over or under the Hall-effect sensor element to ≥1 first FGC output pin, and second leads on a second side of the package. Some leads on the second side are attached to bond pads on the IC die including the output of the Hall-effect element. A clip is attached at one end to the first FGC input pin and at another end to a location on the first FGC output pin, having a reduced width second curved head in between that is over or under the Hall-effect sensor element opposite the first head.
Abstract:
A packaged multichip isolation device includes leadframe including a first and second die pad, with a first and second lead extending outside a molded body having a downward extending lead bend near their outer ends. A first integrated circuit (IC) die on the first die pad has a first bond pad connected to the first lead that realizes a transmitter or receiver. A second IC die on the second die pad has a second bond pad connected to the second lead that realizes another of the transmitter and receiver. An isolation component is in a signal path of the isolation device including a capacitive isolator, or inductors for transformer isolation on or between the die. A midpoint of the thickness of the die pad is raised above a top level of the leads and in an opposite vertical direction relative to the downward extending bend of the external leads.
Abstract:
In one instance, a semiconductor isolation package includes a leadframe that includes a plurality of leadframe leads. At least one of the plurality of leadframe leads includes a lead body having a first end that comprises an external pin portion and a second end. The lead body has a leg portion coupled to a central lead portion that is coupled to an edge bend portion. The edge bend portion is formed by a first bend on the lead body proximate the second end between the central lead portion and edge bend portion. The first bend is in the direction of the first end on the leg portion. The edge bend assists in shielding electronic fields. Other aspects are presented.
Abstract:
A method of testing an integrated circuit clearance distance device (“ICCDD”) having a predetermined clearance distance in air requirement and a predetermined isolation voltage limit including calculating a value of the breakdown voltage at the predetermined clearance distance for at least one gas; and selecting a gas in which the ICCDD has a breakdown voltage that is less than the predetermined isolation voltage.
Abstract:
A method of making an IC device includes providing a stack of leadframe sheets each including a plurality of leadframes and an interleaf member interposed between adjacent ones of the leadframe sheets. The interleaf members include indicia that identifies the leadframes sheets. The stack of leadframe sheets is loaded onto an assembly machine. A first interleaf member is removed from the first leadframe sheet. The first leadframe sheet is transferred onto a mounting surface of the assembly machine. Semiconductor die are attached to leadframes on the first leadframe sheet. The method can include reading the indicia from the first interleaf member to determine a part number and lead finish for the first leadframe sheet, verifying the part number for the first leadframe sheet by comparing to a build list, and transferring the first leadframe sheet onto a mounting surface of the assembly machine only if the part number is verified.