Abstract:
An integrated circuit includes a shallow P-type well (SPW) below a surface of a semiconductor substrate and a shallow N-type well (SNW) below the surface. The SPW forms an anode of a diode and the SNW forms a cathode of the diode. The SNW is spaced apart from the SPW by a well space region; and a thin field relief oxide structure lies over the well space region.
Abstract:
An integrated circuit includes a shallow P-type well (SPW) below a surface of a semiconductor substrate and a shallow N-type well (SNW) below the surface. The SPW forms an anode of a diode and the SNW forms a cathode of the diode. The SNW is spaced apart from the SPW by a well space region; and a thin field relief oxide structure lies over the well space region.
Abstract:
Methods and apparatus to increase efficiency of a power converter using a bias voltage on a low side drive gate are disclosed. An example power converter includes an inductor; a transistor coupled to the inductor; and a driver coupled to a gate of the transistor, the driver to apply (A) a first voltage to the gate to enable the transistor, (B) a second voltage to the gate to disable the transistor, and (C) a third voltage to the gate during a transition between applying the first voltage and the second voltage, the third voltage being between the first voltage and the second voltage.
Abstract:
Methods and apparatus to increase efficiency of a power converter using a bias voltage on a low side drive gate are disclosed. An example power converter includes an inductor; a transistor coupled to the inductor; and a driver coupled to a gate of the transistor, the driver to apply (A) a first voltage to the gate to enable the transistor, (B) a second voltage to the gate to disable the transistor, and (C) a third voltage to the gate during a transition between applying the first voltage and the second voltage, the third voltage being between the first voltage and the second voltage.
Abstract:
A multiphase DC-to-DC synchronous power converter, which has a number of converter channels that generate a corresponding number of current sense signals, blanks the current sense signals in a first converter channel for periods of time that correspond with the actions of the transistors in a second converter channel, where the actions result in noise spikes across the converter that falsely interfere with current sensing in the first converter channel.
Abstract:
A switching regulator includes a low-side switching transistor, a snubber transistor, a first pull-down transistor, and a second pull-down transistor. The low-side switching transistor includes a first current terminal and a second current terminal. The first current terminal is coupled to a switching node. The second current terminal is coupled to a ground terminal. The snubber transistor includes a first current terminal, a second current terminal, and a control terminal. The first current terminal is coupled to the switching node. The second current terminal is coupled to the ground terminal. The first pull-down transistor is coupled between the control terminal of the snubber transistor and the ground terminal. The second pull-down transistor is coupled between the control terminal of the snubber transistor and the ground terminal.
Abstract:
A series capacitor buck converter includes a first half-bridge circuit including a first high side power switch (HSA) and first low side power switch (LSA) connected in series having a first switching node (SWA) therebetween which drives a first output inductor, a second half-bridge circuit including a second HS power switch (HSB) and second LS power switch (LSB) connected in series having a second switching node (SWB) therebetween which drives a second output inductor. A transfer capacitor (Ct) is connected in series with HSA and LSA and between the first and second half-bridge circuits. A first current source is coupled for precharging Ct with a charging current (I_in) and a second current source is coupled to Ct for providing an output current (I_out). A feedback network providing negative feedback forces I_out to match I_in.
Abstract:
A control circuit configured to control a switching power supply including a ramp generator configured to generate a triangular waveform. A comparator is configured to generate a series of pulse width modulated (PWM) pulses at a first frequency and to regulate the switching power supply. The ramp generator includes a capacitor, a charging current source configured to provide a charging current to charge the capacitor, and a discharging current source configured to provide a discharging current to discharge the capacitor. The ramp generator also includes a closed loop current balancing current source configured to balance the currents from the charging and discharging current sources to establish a substantially zero direct current (DC) bias across the capacitor. The controller also includes a multi-phase configuration to provide a stackable multi-channel architecture.
Abstract:
An integrated circuit includes a shallow P-type well (SPW) below a surface of a semiconductor substrate and a shallow N-type well (SNW) below the surface. The SPW forms an anode of a diode and the SNW forms a cathode of the diode. The SNW is spaced apart from the SPW by a well space region; and a thin field relief oxide structure lies over the well space region.
Abstract:
Methods, apparatus, systems and articles of manufacture are disclosed to adjust a transient response. An example apparatus includes a clamping circuit including a first input, a second input, a third input, and an output, wherein the first input is adapted to be coupled to a selector, a reference voltage generator including an output, wherein the output of the reference voltage generator is coupled to the second input of the clamping circuit, an error amplifying circuit including an output, wherein the output of the error amplifying circuit is coupled to the third input of the clamping circuit, and a pulse width modulator including an input, wherein the input of the pulse width modulator is coupled to the output of the clamping circuit.