Abstract:
An integrated circuit includes an NMOS transistor, a PMOS transistor and a vertical bipolar transistor. The vertical bipolar transistor has an intrinsic base with a band barrier at least 25 meV high at a surface boundary of the intrinsic base, except at an emitter-base junction with an emitter, and except at a base-collector junction with a collector. The intrinsic base may be laterally surrounded by an extrinsic base with a higher dopant density than the intrinsic base, wherein a higher dopant density provides the band barrier at lateral surfaces of the intrinsic base. A gate may be disposed on a gate dielectric layer over a top surface boundary of the intrinsic base adjacent to the emitter. The gate is configured to accumulate the intrinsic base immediately under the gate dielectric layer, providing the band barrier at the top surface boundary of the intrinsic base.
Abstract:
An integrated circuit contains a flash cell in which the top gate of the sense transistor is a metal sense gate over the floating gate. The source/drain regions of the sense transistor extend under the floating gate so that the source region is separated from the drain region by a sense channel length less than 200 nanometers. The floating gate is at least 400 nanometers wide, so the source/drain regions of the sense transistor extend under the floating gate at least 100 nanometers on each side. The integrated circuit is formed by forming the sense transistor source and drain regions before forming the floating gate.
Abstract:
A method and structure for improving high voltage breakdown reliability of a microelectronic device, e.g., a galvanic digital isolator, involves providing an abatement structure around metal plate corners of a high voltage isolation capacitor to ameliorate the effects of an electric field formed thereat during operation of the device due to dielectric discontinuity.
Abstract:
In an embodiment of the invention, a method of fabricating a floating-gate PMOSFET (p-type metal-oxide semiconductor field-effect transistor) is disclosed. A silicide blocking layer (e.g. oxide, nitride) is used not only to block areas from being silicided but to also form an insulator on top of a poly-silicon gate. The insulator along with a top electrode (control gate) forms a capacitor on top of the poly-silicon gate. The poly-silicon gate also serves at the bottom electrode of the capacitor. The capacitor can then be used to capacitively couple charge to the poly-silicon gate. Because the poly-silicon gate is surrounded by insulating material, the charge coupled to the poly-silicon gate may be stored for a long period of time after a programming operation.