Abstract:
A wave transmitted by an antenna made up of an array of radiating elements, two pulse waves are transmitted, each modulated by a phase shift law known as modulation phase shift, the phase shifts being in opposition, a first wave being transmitted by a sub-array of radiating elements referred to as odd and the second wave being transmitted by a second sub-array of radiating elements referred to as even, the two sub-arrays being interleaved, the transmitted wave being the combination of the first wave and the second wave.
Abstract:
Method and device for radar transmission and reception by dynamic change of polarization notably for the implementation of interleaved radar modes are provided. A radar transmission-reception method and a device for implementing this method, the method alternatively implementing two modes of operation, a short range mode exploiting short pulses and a long range mode exploiting modulated long pulses, the method consisting, for each mode, in: producing two synchronous radiofrequency (RF) transmission signals having between them a phase-shift θ of controllable given value; radiating two radiofrequency waves, each corresponding to one of the transmission RF signals produced, by means of two colocated radiating sources each having a given polarization axis; handling the reception of the backscattered radiofrequency signals picked up by each of the radiating sources, and delivering two radiofrequency (RF) reception signals each corresponding to a radiofrequency signal picked up by one of the radiating sources, a phase-shift θ′ being applied between the two signals delivered, θ′ being able to be determined as being equal to θ.
Abstract:
A method for confusing the electronic signature of a signal transmitted by a radar, includes the generation by the radar of at least one pulse, wherein the method comprises a step of modulation, in the pulse, of the polarization of the transmitted signal, according to two orthogonal or opposite polarizations, the modulation of the polarization being performed according to a predetermined modulation code.
Abstract:
Disclosed is a calibration device of an imaging system for a moving carrier, the imaging system including: a support panel; an antenna array comprising radiating elements positioned on the support panel; and optical sensors capable of providing images and positioned on the support panel. The calibration device includes at least one optical pattern generator, each generator being secured to the support panel.
Abstract:
A method managing the energy consumption of at least one electronic component in a radar reception chain, comprises a preliminary step of formulating a table containing values representative of the power level of received signals, each value being contained in a bin addressed by a triplet formed of a quantity corresponding to a measurement of the power level of a signal received from a target, of a quantity corresponding to the distance of the target and of a quantity corresponding to the azimuth of the target, the method performing for each received signal, arising from a radar recurrence of order n, the following steps: a step of reading a measurement of the power level of the received signal; a step of addressing the table as a function of the measurement, distance and azimuth of the target, a first power level value then being addressed; a step of extrapolating the power level of the next received signal arising from the following radar recurrence of order n+1, dependent on the first value and on a given number of values of the table addressed by sliding of addresses from the address of the first value according to the power level measurement addresses, the given number being dependent on the speed of the carrier of the reception chain, the step being applied for the received signal of order n+1, the setpoint value of the consumption being dependent at least on the extrapolation of the power level received and the position of the target.
Abstract:
The system has: a set of at least two electric current generators, at least one capacitor and activation/deactivation devices for the electric current generators; the electric current generator being connected in parallel with one another and the capacitor being connected in series with the electric current generators, the activation/deactivation devices controlling the generators by a digital stream allowing control of the intensity of the electric current entering the capacitor and generating a trapezoidal voltage signal at the terminals of the capacitor, the analog signal being reconstructed through interpolation of the trapezoidal signal.
Abstract:
The device includes at least: a set of optical and/or electromagnetic elementary sensors which are able to fly and means of command for piloting the flight of the sensors; processing means; a communication link between each sensor and the processing means; to produce an image of a given scene, the sensors fly while forming an array whose configuration is controlled by the command means, the processing means fusing the signals provided by the sensors with a view to delivering an image of the scene, the signals provided being representative of the scene.
Abstract:
This swarm (101) is made up of a plurality of drones (111-115), the drones being flying drones, the drones forming a communication network with one another. It is characterized in that the swarm implements, autonomously, an obstacle avoidance functionality (20) based on a collaborative observation of the environment of the swarm by each of the drones and the sharing of obstacle detection information among the drones.
Abstract:
An analog signals generating device comprises a current pump controlled by a control code generated by a module for calculating the digital code with shaping of noise. The calculation module receives as input a digital signal representative of the analog signal to be generated and comprises at least one quantizer and a quantization error compensating stage. The current pump comprises two groups of at least one electric current generator and two groups of at least one switching means, the switching facilities being controlled by the control signal and causing the electric currents to flow between the electric current generators and the inputs of a differential amplifier exhibiting a predominantly capacitive input impedance and connected in series between the two groups of switching means.
Abstract:
A method comprises at least the following steps: a step of acquiring data by radar to obtain an SAR image covering a given geographical domain; a step of acquiring at least one secondary image covering the domain, produced by a source external to the radar, the image supplying information on the colors of the constituent elements of the SAR image; a step of superimposing the SAR image and the secondary image; a step of assigning colors to the elements on the basis of their position in the superimposed secondary image.