Abstract:
A preparation method of a homogeneous-reinforced PVDF hollow fiber membrane includes steps of: a) preparing a reinforced matrix membrane, wherein a PVDF hollow fiber membrane is utilized as the reinforced matrix membrane; b) preparing a PVDF casting solution, wherein mass fractions of the PVDF casting solution are: PVDF 6˜20 wt %; hydrophilic polymers or hydrophilic inorganic particles 0.6˜2 wt %; pore-forming agent 6˜10 wt %; and solvent 68˜87.4 wt %; mixing the above solutes in a water bath with a temperature of 70˜90° C., dissolving for 3˜4 h with stirring, then deaerating under vacuum for obtaining the uniform PVDF casting solution; and c) preparing the homogeneous-reinforced membrane; wherein the PVDF casting solution is uniformly coated on an outer surface of the reinforced matrix membrane through a spinning spinneret, then the reinforced matrix membrane is towed by a filament guide roller in such a manner that the hollow fiber forms a membrane, then the membrane passes through an air gap with a length of 5˜20 cm and is immersed in ultrafiltered water for coagulation, in such a manner that the homogeneous-reinforced membrane is obtained; wherein a traction speed is 5˜25 cm/(r·min).
Abstract:
A reinforced oil-absorptive membrane material, includes: a tubular support (101) and an oil absorbing layer (102) provided on a surface of the tubular support (101), wherein a plurality of holes are provided on the tubular support (101); and the oil absorbing layer (102) is a piece of nonwoven fabric with a polymer layer provided thereon. The reinforced oil-absorptive membrane material has an excellent oil-absorbing and supportive performance, and is capable of being utilized continuously in a negative pressure suction manner and thus shows high oil absorption efficiency. A method for manufacturing the reinforced oil-absorptive membrane material including pre-treating the nonwoven fabrics by aqueous alkali, covering a membrane casting solution including a solvent, a graphene, polyvinylidene fluoride, pore-forming agent and inorganic particle, and then solidifying and extracting to obtain the oil-absorbing layer.
Abstract:
A reinforced oil-absorptive membrane material, includes: a tubular support (101) and an oil absorbing layer (102) provided on a surface of the tubular support (101), wherein a plurality of holes are provided on the tubular support (101); and the oil absorbing layer (102) is a piece of nonwoven fabric with a polymer layer provided thereon. The reinforced oil-absorptive membrane material has an excellent oil-absorbing and supportive performance, and is capable of being utilized continuously in a negative pressure suction manner and thus shows high oil absorption efficiency. A method for manufacturing the reinforced oil-absorptive membrane material including pre-treating the nonwoven fabrics by aqueous alkali, covering a membrane casting solution including a solvent, a graphene, polyvinylidene fluoride, pore-forming agent and inorganic particle, and then solidifying and extracting to obtain the oil-absorbing layer.
Abstract:
A method for preparing an aromatic polyamide porous hollow fiber membrane firstly premixes PPTA resin, solvent, composite pore-forming agents and inorganic particles in a stirring vessel to form casting solution, secondly injects the casting solution into a double-screw extruder to be fully dissolved under the effect of shear force and enters a spinneret via a metering pump. The PPTA hollow fiber membranes are prepared by the dry-wet spinning method, which solves the problems that hard pore-forming and low porosity in the preparation process of PPTA porous membrane. Utilization of the double-screw extruder is capable of greatly shortening the dissolved time and the deaeration time. Meanwhile the increase of PPTA in casting solution also improves mechanical properties of the PPTA membrane. The addition of the inorganic particles improves mechanical toughness and enhance pure water flux, hydrophilia and rejection rate.
Abstract:
A method for preparing a homogeneous braid-reinforced (HMR) PPTA hollow fiber membrane combines PPTA hollow tubular braids with PPTA surface separation layer. The method includes following steps of: (1) preparing the PPTA hollow tubular braids, wherein the PPTA hollow tubular braids which are made from PPTA filament yarns are woven by a two-dimensional braided method, the outer diameter of the PPTA tubular braids is 1-2 mm; (2) preparing the PPTA casting solution as the surface separation layer, wherein the 1-3 wt % PPTA resin, 0-2 wt % inorganic particles and 10-20 wt % pore-forming agents are mixed into 75-89% inorganic acid solvent, stirred for 1-3 hours at 70° C.-90° C. to form homogeneous and transparent casting solution; and (3) preparing reinforced PPTA hollow fiber membrane, wherein the casting solution as the surface separation layer is evenly coated on the surfaces of the PPTA hollow tubular braids through spinneret, and they are immersed in a coagulation bath for solidified formation.
Abstract:
A preparation method of a perfluorinated polymer hollow fiber membrane comprises: evenly mixing a first mixture that is mixed by a perfluorinated polymer, PS, a polymer additive, and a composite pore-forming agent; evenly mixing a second mixture that is mixed by the first mixture and an organic liquid; under 300° C.-350° C., processing the second mixture with a melt to spin by a twin-screw extruder; extruding a hollow fiber by a hollow fiber spinneret; dipping the hollow fiber membrane into deionized water for 48 hours; putting the hollow fiber membrane aired into a concentrated sulfuric acid to process with a sulfonation; washing the hollow fiber membrane by deionized water; and drying the hollow fiber membrane; in such a manner that the hydrophilic perfluorinated polymer hollow fiber membrane is obtained.
Abstract:
A preparation method of a perfluorinated polymer hollow fiber membrane comprises: evenly mixing a first mixture that is mixed by a perfluorinated polymer, PS, a polymer additive, and a composite pore-forming agent; evenly mixing a second mixture that is mixed by the first mixture and an organic liquid; under 300° C.-350° C., processing the second mixture with a melt to spin by a twin-screw extruder; extruding a hollow fiber by a hollow fiber spinneret; dipping the hollow fiber membrane into deionized water for 48 hours; putting the hollow fiber membrane aired into a concentrated sulfuric acid to process with a sulfonation; washing the hollow fiber membrane by deionized water; and drying the hollow fiber membrane; in such a manner that the hydrophilic perfluorinated polymer hollow fiber membrane is obtained.