Abstract:
A hollow tubular oil absorbing material includes: a core formed by a spring, and an outer shell formed by a flat sponge wrapped at the spring; wherein the flat sponge is fixed at both ends of the spring; the flat sponge fully covers all the spring or is sealed at a first end; a connecting tube is connected at a second end of the spring for communicating with a vacuum pump; a graphene oxide layer is coated at the outer sponge. The graphene oxide layer on the flat sponge of hollow tubular oil absorbing material is formed by immersion and coating under negative pressure. Further the reduction of graphene oxide is performed with hydrazine hydrate steam and followed by washing and drying. Finally, a hollow tubular oil absorbing material with a spring core and an outer grapheme-coated sponge structure is obtained, which can be applied to continuous oil-water separation.
Abstract:
A membrane formulation of fluorinated copolymer porous membrane includes: 15-50 wt % ethylene-chlorotrifluoroethylene copolymer, 30-85 wt % diluent and 0-20 wt % composite pore-forming agent, totally 100 wt %; wherein the diluent is selected from a group consisting of di-isooctyladinpate, di-isooctyladinpate with dibutyl phthalate, diethyl phthalate and dioctyl phthalate with any proportion. Methods for preparing a fluorinated copolymer porous flat membrane and a fluorinated copolymer hollow fiber porous membrane with the above formulation are also provided. With the formulation, a membrane-forming temperature is reduced to below 200° C., and processes thereof are convenient. Furthermore, membrane mechanical property is excellent, porosity is high, permeability is sufficient, and the method is suitable for membrane separation under severe conditions such as acid-base mediums and organic solvents.
Abstract:
A homogeneous fiber reinforced PVDF hollow fiber membrane and a preparation method thereof are provided. The membrane includes a hollow tubular reinforcement made of PVDF fibers and a polymer separation layer made of PVDF casting solution; wherein the polymer separation layer casting solution comprises 4-25% PVDF resin, 5-20% pore-forming agent, 0-3% inorganic particles and 52-91% solvent according to mass fraction. The preparation method includes steps of: (1) preparing a hollow tubular reinforcement made of PVDF fibers; (2) preparing a PVDF polymer separation layer casting solution; and (3) obtaining the homogeneous fiber reinforced PVDF hollow fiber membrane.
Abstract:
A method for preparing an aromatic polyamide porous hollow fiber membrane firstly premixes PPTA resin, solvent, composite pore-forming agents and inorganic particles in a stirring vessel to form casting solution, secondly injects the casting solution into a double-screw extruder to be fully dissolved under the effect of shear force and enters a spinneret via a metering pump. The PPTA hollow fiber membranes are prepared by the dry-wet spinning method, which solves the problems that hard pore-forming and low porosity in the preparation process of PPTA porous membrane. Utilization of the double-screw extruder is capable of greatly shortening the dissolved time and the deaeration time. Meanwhile the increase of PPTA in casting solution also improves mechanical properties of the PPTA membrane. The addition of the inorganic particles improves mechanical toughness and enhance pure water flux, hydrophilia and rejection rate.
Abstract:
Disclosed is a polyvinylidene fluoride/ultra-high molecular weight polyethylene blend microporous membrane and preparation method thereof, which belongs to the field of microporous membrane. The blend microporous membrane has good hydrophobicity, mechanical properties and permeability. The preparation method includes: preparing a suspension by polyvinylidene fluoride, ultra-high molecular weight polyethylene, antioxidant and diluent; then feeding the obtained suspension into a twin-screw extruder, and the cast membrane gel extruded from the outlet is directly injected into a metal mold for injection molding; the mold temperature and the outlet temperature of the extruder are the same, and the cavity surface of the mold has micro-prism array structure; then cooling the mold in aqueous medium to obtain a nascent gel membrane; drying the obtained nascent gel membrane in a freeze dryer after removal of the diluents by extraction. The prepared membrane can be used in the membrane separation technology such as membrane distillation.
Abstract:
Disclosed is a polyvinylidene fluoride/ultra-high molecular weight polyethylene blend microporous membrane and preparation method thereof, which belongs to the field of microporous membrane. The blend microporous membrane has good hydrophobicity, mechanical properties and permeability. The preparation method includes: preparing a suspension by polyvinylidene fluoride, ultra-high molecular weight polyethylene, antioxidant and diluent; then feeding the obtained suspension into a twin-screw extruder, and the cast membrane gel extruded from the outlet is directly injected into a metal mold for injection molding; the mold temperature and the outlet temperature of the extruder are the same, and the cavity surface of the mold has micro-prism array structure; then cooling the mold in aqueous medium to obtain a nascent gel membrane; drying the obtained nascent gel membrane in a freeze dryer after removal of the diluents by extraction. The prepared membrane can be used in the membrane separation technology such as membrane distillation.
Abstract:
The present invention discloses a hydrophobic-oleophilic and hollow fiber composite membrane and preparing method thereof. A preparing method includes preparing hollow tubular braids by two-dimensional braided technique using polyester filaments, wherein the hollow tubular braids are used as the reinforcements. The method further includes mixing polyvinylidene fluoride, hydrophobic pore-forming agent, and the rest of solvent to prepare a casting solution of surface separation layer. The method further includes pre-treatment processing of the reinforcements; and coating the casting solution of surface separation layer on the outer surface of the processed reinforcements through a spinning spinneret to form a primary membrane. The reinforcements are replaced by the primary after post-processing, and repeating the coating process.
Abstract:
A homogeneous fiber reinforced PVDF hollow fiber membrane and a preparation method thereof are provided. The membrane includes a hollow tubular reinforcement made of PVDF fibers and a polymer separation layer made of PVDF casting solution; wherein the polymer separation layer casting solution comprises 4-25% PVDF resin, 5-20% pore-forming agent, 0-3% inorganic particles and 52-91% solvent according to mass fraction. The preparation method includes steps of: (1) preparing a hollow tubular reinforcement made of PVDF fibers; (2) preparing a PVDF polymer separation layer casting solution; and (3) obtaining the homogeneous fiber reinforced PVDF hollow fiber membrane.
Abstract:
A method for preparing a homogeneous braid-reinforced (HMR) PPTA hollow fiber membrane combines PPTA hollow tubular braids with PPTA surface separation layer. The method includes following steps of: (1) preparing the PPTA hollow tubular braids, wherein the PPTA hollow tubular braids which are made from PPTA filament yarns are woven by a two-dimensional braided method, the outer diameter of the PPTA tubular braids is 1-2 mm; (2) preparing the PPTA casting solution as the surface separation layer, wherein the 1-3 wt % PPTA resin, 0-2 wt % inorganic particles and 10-20 wt % pore-forming agents are mixed into 75-89% inorganic acid solvent, stirred for 1-3 hours at 70° C.-90° C. to form homogeneous and transparent casting solution; and (3) preparing reinforced PPTA hollow fiber membrane, wherein the casting solution as the surface separation layer is evenly coated on the surfaces of the PPTA hollow tubular braids through spinneret, and they are immersed in a coagulation bath for solidified formation.
Abstract:
A hollow tubular oil absorbing material includes: a core formed by a spring, and an outer shell formed by a flat sponge wrapped at the spring; wherein the flat sponge is fixed at both ends of the spring; the flat sponge fully covers all the spring or is sealed at a first end; a connecting tube is connected at a second end of the spring for communicating with a vacuum pump; a graphene oxide layer is coated at the outer sponge. The graphene oxide layer on the flat sponge of hollow tubular oil absorbing material is formed by immersion and coating under negative pressure. Further the reduction of graphene oxide is performed with hydrazine hydrate steam and followed by washing and drying. Finally, a hollow tubular oil absorbing material with a spring core and an outer grapheme-coated sponge structure is obtained, which can be applied to continuous oil-water separation.