Abstract:
During performance of low efficiency power generation, a control device controls the flow rate of feed of the oxidizing agent gas so that the amount of heat generation of the fuel cell accompanying power generation loss becomes a first amount of heat generation when the state of a mount on which the fuel cell system is mounted is a first mode and controls the flow rate of feed of the oxidizing agent gas so that the amount of heat generation becomes a second amount of heat generation smaller than the first amount of heat generation when the state of the mount is a second mode where the generated electric power of the fuel cell fluctuates more easily compared with the first mode.
Abstract:
A fuel cell system installed in a vehicle, the system comprising: a fuel cell, a secondary cell, a system temperature acquirer for acquiring a temperature of an inside of the fuel cell system, and a controller, wherein, when the system temperature is a predetermined first temperature or less, the controller charges the secondary cell until a state-of-charge value of the secondary cell reaches a predetermined first threshold value, and the controller carries out a first pattern purge on the fuel cell, and wherein, when the system temperature exceeds the predetermined first temperature, the controller charges the secondary cell until the state-of-charge value of the secondary cell reaches a predetermined second threshold value that is larger than the predetermined first threshold value, and the controller carries out a second pattern purge having a shorter purge time than the first pattern purge on the fuel cell.
Abstract:
A fuel cell system comprises a fuel cell, a gas-liquid separator, a drain flow path through which moisture is discharged from the gas-liquid separator, a valve configured to control discharge of the moisture from the gas-liquid separator, and a controller configured to control fuel cell operation and opening and closing of the valve, and determine whether the valve is frozen. Upon receipt of a stop request of the fuel cell during the fuel cell operation, the controller repeatedly determines whether the valve is frozen. If the controller determines that the valve is frozen, it continues the fuel cell operation until it determines that the valve is not frozen. If the controller determines that the valve is not frozen, it executes stop processing of the fuel cell including opening valve processing.
Abstract:
An exhaust gas purification apparatus for an internal combustion engine comprises: a selective catalytic reduction (SCR) catalyst selectively reducing NOx in an exhaust gas of the internal combustion engine using ammonia as a reducing agent; a supply device adding an additive agent, such as ammonia, to the exhaust gas at an upstream side of the SCR catalyst; and a controller, when a temperature of SCR catalyst is higher than a predetermined temperature, increases a NOx concentration of the exhaust gas flowing into the SCR catalyst and increases an amount of addition of the additive agent in such a manner that a ratio of an amount of ammonia with respect to an amount of NOx contained in the exhaust gas flowing into the SCR catalyst, becomes large, as compared to when the temperature is equal to or less than the predetermined temperature.
Abstract:
A fuel cell system comprising: the fuel cell, the secondary cell and a controller, wherein, when a power generation pretreatment of the fuel cell is carried out, and when there is a request from the fuel cell to run the vehicle by output power of the secondary cell, the controller calculates discharge permission energy of the secondary cell, calculates a running permission delay request time from the discharge permission energy, which is a time necessary from the request to run the vehicle to the permission to run the vehicle, and measures a running permission delay time, which is a time that elapsed from the request to run the vehicle, and wherein, when the running permission delay request time value is smaller than the running permission delay time value, the controller permits the vehicle to run.
Abstract:
A fuel cell vehicle comprises a fuel cell, a power storage device, a drive motor, a temperature sensor configured to measure a temperature of the fuel cell, a detector configured to detect an operation condition of the fuel cell, and a controller. At a start time of the fuel cell, in a case where the temperature of the fuel cell detected by the temperature sensor is below a freezing point, when an output condition of the fuel cell shown by the detected operation condition of the fuel cell continuously corresponds to a predetermined low output condition for a predetermined reference time period or longer, the controller sets a driving state of the fuel cell vehicle to a first driving state that stops power generation of the fuel cell, drives the drive motor by using only the power storage device as a power source and limits a motor output of the drive motor to be equal to or lower than a predetermined first upper limit output.
Abstract:
A power generation amount of a power generator disposed on a vehicle is appropriately controlled by ordering the power generator a required power generation amount so as to control the power generator, driving a drive motor configured to drive a driving wheel of the vehicle using at least part of electric power generated by the power generator according to the required power generation amount, storing at least part of surplus power left in the electric power generated by the power generator in a storage device, detecting a slip of the driving wheel, and, executing reduction processing of a power generation amount for further reducing a required power generation amount that reflects a reduction amount of the electric power for driving the drive motor due to the slip of the driving wheel, if the detected extent of the slip is larger than a predetermined threshold.
Abstract:
A fuel cell system for a vehicle includes: a fuel cell; a plurality of loads that consumes power generated by the fuel cell and includes a vehicle driving motor; a secondary battery configured to be charged with excess power when an amount of power generated by the fuel cell is greater than an amount of power consumed by the loads and to discharge shortage power when the amount of power generated by the fuel cell is less than the amount of power consumed by the loads; and a control unit configured to control the amount of power generated by the fuel cell such that an amount of charging-discharging power of the secondary battery is maintained at a predetermined value.
Abstract:
An exhaust gas control apparatus for an internal combustion engine includes an addition valve, a tank, a urea water passage, a pump, a nitrogen oxides catalyst, and an electronic control unit. The electronic control unit is configured to: control the pump, as a first control, such that a specified amount of the urea water stored in the addition valve and the urea water passage is returned to the tank after the internal combustion engine is stopped; control the pump, as a second control, such that the specified amount or more of the urea water in the tank is discharged from the tank to the urea water passage after the first control is executed; and control the pump, as a third control, such that all the urea water stored in the addition valve and the urea water passage is returned to the tank after the second control is executed.
Abstract:
An object is to suppress the occurrence of a failure in supply of urea water as much as possible in filling control of urea water in a pump share-type urea water supply system with two supply valves. In the pump share-type urea water supply system with a first supply valve and a second supply valve, a urea water tank is connected with the respective supply valves by a urea water supply path. The urea water supply path includes a first supply path for the first supply valve and a second supply path for the second supply valve. The second supply path has a larger capacity than the capacity of the first supply path by a predetermined volume. Filling control of urea water pressure-feeds urea water to the first supply valve and the first supply path by a pump operated in a specified operating state in a state that at least the first supply valve out of the first and second supply valves is opened, and closes the first supply valve based on a pressure value or a pressure variation per unit time obtained by an acquirer.