Abstract:
An adapter is provided that has both an electrical coupling configuration that complies with the RJ-45 wiring standard for electrical communications and an optical coupling configuration for optical communications. The adapter is configured as an interface for at least two modular connector assemblies to enable the modular connector assemblies to communicate with each other either optically or electrically, depending on whether the plugs of the assemblies are configured to have optical or electrical communications capabilities.
Abstract:
A modular connector assembly is provided that has both an electrical coupling configuration that complies with the RJ-45 wiring standard and an optical coupling configuration that provides the assembly with optical communications capabilities. In addition, the modular connector assembly is configured to have backwards compatibility with existing 8P8C jacks and plugs that implement the RJ-45 wiring standard. Consequently, the modular connector assembly may be used to communicate optical data signals at higher data rates (e.g., 10 Gb/s and higher) or to communicate electrical data signals at lower data rates (e.g., 1 Gb/s).
Abstract:
A method for forming a diffractive lens includes forming an etch stop layer on a first surface of a silicon substrate, forming a diffractive optical element above the etch stop layer, forming a planarization layer covering the diffractive optical element, planarizing the planarization layer, forming a bonding layer on the planarization layer, bonding a transparent substrate on the bonding layer, and etching a second surface of the silicon substrate to the etch stop layer to remove a portion of the silicon substrate opposite the diffractive optical element, wherein the remaining portion of the silicon substrate forms a bonding ring.
Abstract:
Micro-valves that include a diaphragm capable of being positioned on a valve seat or removed from the valve seat. The micro-valves also include supports and a cover that restrict the motion of the diaphragm, thereby reducing the possibility of cracking. Micro-valves made by anodically bonding the diaphragm to a seat substrate and anodically bonding the cover to the diaphragm. Micro-injectors that include micro-valves. Also, methods of making the micro-valves and micro-injectors.
Abstract:
A thin hybrid plug, a thin hybrid receptacle that mates with the thin hybrid plug, and a thin hybrid connector assembly comprising the thin hybrid receptacle mated with the thin hybrid plug are provided. A method for configuring a thin hybrid plug so that an optical surface of the plug is disposed for easy cleaning is also provided. An optics system of the hybrid plug has an optical surface that is substantially flush with an end face of a molded plug body of the hybrid plug to allow the optical surface to be easily wiped clean. In addition, the electrical contacts system and the optics system of the hybrid plug are arranged to enable the optical surface of the optics system to be easily wiped with a cleaning device, such as a cotton-tipped swab, for example. An optics system of the hybrid receptacle has an optical surface that is also disposed to be easily wiped with a cleaning device, such as a cotton-tipped swab, for example.
Abstract:
An opto-electronic module connector system is mountable on a system substrate, such as a printed circuit board, in a variety of configurations or orientations and includes an electromagnetic interference (EMI)-shielding enclosure, a connector assembly, and a socket. The connector assembly includes a connector body, a connector printed circuit board, a substantially planar contact holder, electrical contact fingers mounted on the contact holder, and an opto-electronic module. When the EMI-shielding enclosure and socket are mounted on the system substrate, a user can readily insert the connector assembly into the EMI-shielding enclosure and plug it into the socket. A user can likewise readily remove the connector assembly from the EMI-shielding enclosure and socket for maintenance, cleaning, repair or other purposes.
Abstract:
An opto-electronic module system includes an opto-electronic module having an optics engine module mounted on an opto-electronic module substrate. The optics engine module includes an opto-electronic light source and an opto-electronic light receiver mounted on an optics engine module substrate. The opto-electronic module substrate has an aperture that is aligned with the opto-electronic light source and the opto-electronic light receiver.
Abstract:
An optical package includes a sub-mount, an edge-emitting laser mounted on the sub-mount, a collimating ball lens mounted on the sub-mount adjacent to the edge-emitting laser, a mirror mounted on the sub-mount adjacent to the collimating ball lens. The sub-mount is made of a bottom wafer. A lid is bonded to the sub-mount to form the laser package. The lid is made of a middle wafer bonded to a top wafer. The middle wafer defines an opening that accommodates the edge-emitting laser, the collimating ball lens, and the mirror. The opening is defined by vertical sidewalls. The top wafer further includes a lens above the mirror.
Abstract:
In a method of forming a device so as to include a reflective surface at a specific angle to an incident optical axis, a region of a first major surface of a substrate is exposed to an anisotropic etchant to form a surface having the specific angle with respect to the first major surface, but the etched surface is then used as a mounting surface. That is, rather than anisotropically etching a reflective surface, the etching provides the mounting surface and the second major surface of the substrate functions as the reflective surface when the fabricated device is properly mounted. The substrate may be a silicon wafer having a 9.74 degree off-axis cut. Then, a 45 degree mirror is formed by the process. When the reflector is used in an optical device, the crystalline plane will be generally parallel to the surface of the support.
Abstract:
An alignment assembly for an optics module includes an alignment stage that is enabled to provide an adjustment of the relative positioning of a light beam and a lens, but also includes a locking mechanism which disables the movement of the alignment stage following a one-time alignment procedure. The locking mechanism may include one or more heaters and meltable material which is heated during the one-time alignment procedure and cooled when the target relative position between the beam and the lens is achieved.