Abstract:
A MEMS substrate is formed from a transparent substrate and a movable type shutter arranged on each pixel of a surface of the transparent substrate. An AP substrate includes another substrate and a light blocking film arranged on the other transparent substrate formed with an aperture corresponding to each shutter. A plurality of supporting columns is formed on a surface of the transparent substrate of the MEMS substrate. A plurality of cylindrical contact holes having the same inner diameter as an outer diameter of each supporting column are formed at a position corresponding to one part of the supporting columns. Both substrates are arranged with a certain interval so that each shutter and an aperture oppose each other, thereby a tip end of corresponding supporting columns is inserted into each contact hole and in this way, both substrate are mutually positioned.
Abstract:
A liquid crystal display device according to the invention includes a first substrate, on a surface of which are formed: a first color film which has a color other than black, and one portion of which configures a first pixel; a second color film, one portion of which configures a second pixel adjacent to the first pixel; a third color film, at least one portion of which configures a third pixel; and a fourth color film, a second substrate, and a liquid crystal layer sandwiched between the first substrate and second substrate, wherein the first color film and second color film have a first overlapping portion in which they overlap each other in the boundary between the first pixel and second pixel, and the fourth color film, being formed on the first overlapping portion, configures a post spacer which defines the space between the first substrate and second substrate.
Abstract:
A display device includes a substrate having an upper surface. The display device also includes a light reflecting layer to reflect light, formed over the upper surface of the substrate. The display device also includes a light absorbing layer to absorb light, formed over the upper surface of the light reflecting layer. A plurality of apertures are defined through the light reflecting layer and the light absorbing layer such that, at an edge of each of the plurality of apertures, the light absorbing layer partially overhangs the light reflecting layer.
Abstract:
The present invention provides a manufacturing method for a liquid crystal display device, wherein the liquid crystal display device comprises first and second color filters provided on the liquid crystal side of one of a pair of substrates which are positioned so as to face each other and sandwich liquid crystal in between so as to be adjacent to each other, and a first side portion of the first color filter on the second color filter side overlaps with a second side portion of the second color filter on the first color filter side, characterized in that the border between the light blocking region and the non-light blocking region in a photomask for forming the first color filter, which corresponds to the first side portion, has a zigzag pattern with repeating mountains and valleys along this border, and the border between the light blocking region and the non-light blocking region in a photomask for forming the second color filter, which corresponds to the second side portion, has a zigzag pattern with repeating mountains and valleys along this border.
Abstract:
A MEMS substrate is formed from a transparent substrate and a movable type shutter arranged on each pixel of a surface of the transparent substrate. An AP substrate includes another substrate and a light blocking film arranged on the other transparent substrate formed with an aperture corresponding to each shutter. A plurality of supporting columns is formed on a surface of the transparent substrate of the MEMS substrate. A plurality of cylindrical contact holes having the same inner diameter as an outer diameter of each supporting column are formed at a position corresponding to one part of the supporting columns. Both substrates are arranged with a certain interval so that each shutter and an aperture oppose each other, thereby a tip end of corresponding supporting columns is inserted into each contact hole and in this way, both substrate are mutually positioned.
Abstract:
A liquid crystal display device includes a first substrate and a second substrate with a liquid crystal layer therebetween. The first substrate includes drain lines, gate lines, thin-film transistors that output signals to pixel electrodes, and an organic film that is formed between each thin-film transistor and each pixel electrode. The organic film has a contact hole for electrical connection between a source electrode of each thin-film transistor and each pixel electrode. A step is formed in a layer underlying the organic film and an edge portion of the organic film toward the thin-film transistor, the edge portion forming the contact hole, being formed to lie on a lower plane of the step. A sidewall part of the contact hole which is formed in the organic film is formed to have a taper angle of at least 60 degrees.
Abstract:
Provided is a display device, including: a sealing member including an opening and surrounding a space defined by a pair of light transmissive substrates; an end seal for closing the opening of the sealing member to form an encapsulation space; oil filled in the encapsulation space; a spacer for maintaining an interval between the pair of light transmissive substrates; a shutter; a drive portion arranged in the oil, for mechanically driving the shutter; and a wall portion formed on at least one of opposed surfaces of the pair of light transmissive substrates. The wall portion includes apart arranged at a position interrupting a shortest path between the opening of the sealing member and a display region. The wall portion is made of a material forming the spacer, the shutter, and the drive portion.
Abstract:
Provided is a display device, including: a sealing member including an opening and surrounding a space defined by a pair of light transmissive substrates; an end seal for closing the opening of the sealing member to form an encapsulation space; oil filled in the encapsulation space; a spacer for maintaining an interval between the pair of light transmissive substrates; a shutter; a drive portion arranged in the oil, for mechanically driving the shutter; and a wall portion formed on at least one of opposed surfaces of the pair of light transmissive substrates. The wall portion includes apart arranged at a position interrupting a shortest path between the opening of the sealing member and a display region. The wall portion is made of a material forming the spacer, the shutter, and the drive portion.
Abstract:
A liquid crystal display device according to the invention includes a first substrate, on a surface of which are formed: a first color film which has a color other than black, and one portion of which configures a first pixel; a second color film, one portion of which configures a second pixel adjacent to the first pixel; a third color film, at least one portion of which configures a third pixel; and a fourth color film, a second substrate, and a liquid crystal layer sandwiched between the first substrate and second substrate, wherein the first color film and second color film have a first overlapping portion in which they overlap each other in the boundary between the first pixel and second pixel, and the fourth color film, being formed on the first overlapping portion, configures a post spacer which defines the space between the first substrate and second substrate.
Abstract:
A liquid crystal display device with a higher aperture ratio is provided. According to one embodiment of the present invention, second color filters are formed so as to overlap with first color filters when adjacent color filters having different colors are formed on the TFT substrate side, so that the angle of the first tapers where said first color filters overlap and the angle of the second tapers where said second color filters overlap are set to 45° or more and 90° or less.