摘要:
A metal layer is formed on a highly light-transmissive substrate; a resist mask having an opening pattern is formed on the metal layer; exposed portions of the metal layer is etched away in this state to form openings; then the resist mask is removed; and a surface of the metal layer and an inner side wall of each of the openings are oxidized to form a metal oxide layer. Thus, a front surface and a rear surface of the aperture plate are caused to have different reflectances. The oxide layer is formed at the same time as when the resist mask is ashed to remove resist.
摘要:
A pixel is formed by sealing an insulating liquid and floating particles in an area defined by a first substrate, a second substrate and partitions. The width of the partition has to be reduced in order to improve the pixel brightness by enlarging a flat electrode. In this case, the height of the partition has to be reduced for retaining the mechanical strength. If the height of the partition is reduced, an area of the partition electrode becomes small, thus failing to retain the memory effect. The planar surface of the partition is then formed into a zigzag shape so as to increase the area of the partition electrode.
摘要:
Gate electrodes are formed on a substrate. A gate insulation film is formed so as to cover the gate electrodes. A semiconductor layer is formed in regions on the gate insulation film in a region which overlap with at least the gate electrodes. Plasma treatment is applied to the semiconductor layer using a gas which contains a dopant thus increasing impurity concentration of a surface layer of the semiconductor layer. A conductive film is formed on the surface layer of the semiconductor layer to which the plasma treatment is applied. A source electrode and a drain electrode are formed by etching the conductive film.
摘要:
A liquid crystal display device according to the invention includes a first substrate, on a surface of which are formed: a first color film which has a color other than black, and one portion of which configures a first pixel; a second color film, one portion of which configures a second pixel adjacent to the first pixel; a third color film, at least one portion of which configures a third pixel; and a fourth color film, a second substrate, and a liquid crystal layer sandwiched between the first substrate and second substrate, wherein the first color film and second color film have a first overlapping portion in which they overlap each other in the boundary between the first pixel and second pixel, and the fourth color film, being formed on the first overlapping portion, configures a post spacer which defines the space between the first substrate and second substrate.
摘要:
The present invention provides a liquid crystal display device with high image visibility at low power consumption and produced at low cost by using an interlayer dielectric film, which has low dielectric constant, high heat-resistant property, high optical transmissivity, high film thickness and high flattening property produced at low cost. An organic siloxane dielectric film is used as an interlayer dielectric film of the liquid crystal display device. A ratio of nitrogen content to silicon content (Ni content/Si content) in the interlayer dielectric film is controlled to 0.04 or more in the element ratio. The limiting film thickness to suppress and limit the cracking caused by the thickening of the interlayer dielectric film is set to 1.5 μm or more.
摘要:
The present invention provides a fabrication method of a display device which aims at the reduction of fabricating man-hours. In a fabrication method of a display device having a thin film transistor in which a gate electrode includes a first gate electrode and a second gate electrode which is overlapped to the first gate electrode and has a size thereof in the channel direction set smaller than the corresponding size of the first gate electrode, the semiconductor layer includes a channel region which is overlapped to the second gate electrode, a first impurity region which is overlapped to the first gate electrode and is formed outside the second gate electrode, a second impurity region which is formed outside the gate electrode, and a third conductive impurity region which is formed outside the gate electrode and the second impurity region, the first impurity region, the second impurity region and the third impurity region are respectively formed of the same conductive type, the impurity concentration of the first impurity region is lower than the impurity concentration of the third impurity region, and the impurity concentration of the second impurity region is lower than the impurity concentration of the first impurity region, impurities are collectively implanted into both of the first and second impurity regions such that the impurities are implanted into the first impurity region by way of the first gate electrode and the impurities are implanted into the second impurity region such that a peak position of the impurity concentration in the depth direction is positioned below the semiconductor layer thus lowering the impurity concentration of the second impurity region than the impurity concentration of the first impurity region.
摘要:
The present invention provides a fabrication method of a display device which aims at the reduction of fabricating man-hours. In a fabrication method of a display device having a thin film transistor in which a gate electrode includes a first gate electrode and a second gate electrode which is overlapped to the first gate electrode and has a size thereof in the channel direction set smaller than the corresponding size of the first gate electrode, the semiconductor layer includes a channel region which is overlapped to the second gate electrode, a first impurity region which is overlapped to the first gate electrode and is formed outside the second gate electrode, a second impurity region which is formed outside the gate electrode, and a third conductive impurity region which is formed outside the gate electrode and the second impurity region, the first impurity region, the second impurity region and the third impurity region are respectively formed of the same conductive type, the impurity concentration of the first impurity region is lower than the impurity concentration of the third impurity region, and the impurity concentration of the second impurity region is lower than the impurity concentration of the first impurity region, impurities are collectively implanted into both of the first and second impurity regions such that the impurities are implanted into the first impurity region by way of the first gate electrode and the impurities are implanted into the second impurity region such that a peak position of the impurity concentration in the depth direction is positioned below the semiconductor layer thus lowering the impurity concentration of the second impurity region than the impurity concentration of the first impurity region.
摘要:
Where a thin film formed on a glass substrate is etched with a solution containing a fluoride, insoluble residues formed by the reaction of the solution with glass substrate components adhere to the back of the substrate to cause etching non-uniformity called roller marks. So, a solution is supplied directly to supporting members for supporting the glass substrate, or concentratedly to a region where the substrate and the supporting members come into contact and from a position opposite to the transporting direction of the substrate, or to both the supporting members and regions where the substrate and the supporting members come into contact. This enables the roller marks to be kept from forming, consequently making it possible to improve display quality of display devices.
摘要:
A combination circuit is switched between an active state where power is supplied thereto in response to a control signal and an inactive state where power thereto is interrupted. A flip-flop circuit connected to an input terminal of the combination circuit stores an output signal of the combination circuit in response to a clock signal. The combination circuit is set to an operative state by the control signal immediately before the flip-flop circuit operates in response to the clock signal.
摘要:
A metal layer is formed on a highly light-transmissive substrate; a resist mask having an opening pattern is formed on the metal layer; exposed portions of the metal layer is etched away in this state to form openings; then the resist mask is removed; and a surface of the metal layer and an inner side wall of each of the openings are oxidized to form a metal oxide layer. Thus, a front surface and a rear surface of the aperture plate are caused to have different reflectances. The oxide layer is formed at the same time as when the resist mask is ashed to remove resist.