摘要:
When an item (T.sub.1 or T.sub.2) for revising chamfering or rounding is selected from a menu table (108b) of a tablet device (108), all corner portions (E.sub.1 -E.sub.3) included in profile (A.sub.1) and pertaining to the revision item (e.g., the item for revision rounding) are displayed in a color different from the other portions of the profile. Thereafter, a corner portion (E.sub.1) requiring revision is designated by a graphic cursor (K), whereupon the corner portions (E.sub.2, E.sub.3) other than the designated corner portion return to the original color so that only the designated corner portion (E.sub.1) may be identified for revision. .
摘要:
The invention relates to an NC data creation method for machining a curved surface (101) having a cutting boundary surface (102) in the depth direction. Data specifying the three-dimensional curved surface (101) and the curved surface (102) of a cutting boundary in the depth direction are inputted. When the three-dimensional curved surface (101) is defined by a set of a plurality of point-sequence paths (11i), a point sequence Q(i,j) of a tool nose corresponding to a point sequence A(i,j) is determined. Next, there is determined a projected point sequence B'(i,j) obtained by projecting the point sequence Q(i,j) of the tool nose onto a reference plane (103), as well as a projected point sequence C(i,j) obtained by projecting the first-mentioned projected point sequence onto the curved surface (102) of the cutting boundary. Thereafter, a check is performed to see whether a line segment connecting the point sequence Q(i,j) of the tool nose and a line segment connecting the projected point sequence C(i,j) on the curved surface of the cutting boundary intersect. If they do intersect, NC data up to the point of intersection P(i,j) are created. NC data are subsequently created in the same manner upon performing a pick-feed.
摘要:
A method of creating NC data for grooving, a unit normal vector (N) at the position (Pe) of a grooving end point is obtained after creation of NC data for grooving, a movement vector (D) is obtained by multiplying a designated movement distance (da) by the unit normal vector (N), and NC data for withdrawal are created for moving a tool (TL), by the amount of the movement vector (D), from the position (Pe) at which grooving ends.
摘要:
A method of displaying a structure (SML) three-dimensionally, in which a rectangular parallelepiped (RP), having on each of its sides distances (L.sub.x, L.sub.y, L.sub.z) between minimum and maximum positions along each axis of a structure (SML) is constituted by a set of a number of unit solids, e.g., unit cubes (UC), of the same shape and same dimensions. The structure is represented by information indicating whether each unit solid is part of the structure (SML). Individual ones of the unit solids constituting the structure (SML) are displayed in order starting from unit solids seen on a the front side of the structure. The face of a unit solid overlapping a face of a unit solid already displayed is not displayed; instead, only the visually foremost faces thereof are displayed, thereby displaying a perspective view of the three-dimensional structure (SML).
摘要:
A prescribed menu item on a menu table (108b) is picked to designate a method of defining a figure element, and a predefined figure element displayed on a display screen (106) is picked. A processor (102) defines a new figure element using the picked figure element definition method and the picked figure element, and defines a part profile using figure elements picked in the order of tool motion when the defining of all figure elements is completed. In this case, the processor expresses, in a first format based upon an automatic programming language, figure elements and the part profile as defined, and stores the figure elements and part profile in a storage ares (103b). Using a second format for the figure elements, each point is expressed as the coordinate values thereof, each straight line expressed as the coordinate values of two points, and each circle expressed as the coordinates of the center of the circle and the radius of the circular arc, are stored in a storage area 103c. when there is a request for output of the part profile, the processor (102) outputs the figure elements and the part profile in the automatic programming language using the first format. When a figure element designated by a graphic cursor is identified and when the figure is displayed, processing is performed using the second format.
摘要:
A curved surface creation method suitable for use in creating two curved surfaces for coarse and finishing machining. A first space curve (1) is divided into N segments, a second space curve separately obtianed is similarly divided into N segments and a curved surface for coarse machining is created by connecting corresponding i-th dividing points R.sub.i (i=1, 2, . . . ). Next, the first space curve (1), which is obtained by successively connecting the dividing points R.sub.i (i=1, 2, 3, . . . ), is divided into M (>N) segments, the second space curve is similarly divided into M segments and a curved surface for finishing machining is created by connecting the i-th dividing points S.sub.i (i=1, 2, 3, . . . ) of the first space curve (1), which is divided into M segments, with and the corresponding dividing points of the second space curve.
摘要:
The invention relates to a method of creating NC data for machining the interior of an area. The method includes displaying, on a graphic display unit (106), contours (CNT1, CNT2) inputted in order to specify the area (AR.sub.M), recognizing the area (AR.sub.M), which is designated by a graphic cursor by manipulation of a tablet (108) and painting the interior of the area in a predetermined color, subsequently removing the paint in a linear area (AR.sub.1), having a width equivalent to a width of a tool, which connects a machining starting point (P.sub.S) and a machining end point (P.sub.E) designated by the graphic cursor, adopting the machining end point as the next machining starting point, thereafter inputting machining end points in succession, and creating NC data for machining the interior of the area (AR.sub.M) by traversing a finally designated machining starting point and machining end point while moving the tool linearly.
摘要:
This invention relates to a method of creating a complex curved surface (100) by combining at least first and second three-dimensional curved surfaces (101, 102), which method includes a step of inputting data for specifying first and second three-dimensional curved surfaces (101, 102), a step of obtaining coordinates of a j-th point Q(i,j) along an i-th path L.sub.c (i), where the second three-dimensional curved surface (102) is defined by a set of plural paths, a step of determining, with regard to the first three-dimensional curved surface (101), whether the point Q(i,j) is on the same side as a (j-1)th point Q(i,j-1) along the i-th path, a step of storing the point Q(i,j) if it is on the same side and, if it is not on the same side, obtaining and storing the coordinates of a point S(i,j) on the first three-dimensional curved surface (101) corresponding to a projected point obtained by projecting the point Q(i,j) on a predetermined plane, and thereafter executing similar processing upon performing the operation j+1.fwdarw.j and obtaining position data indicative of the next point Q(i,j) on the i-th path, obtaining a point on the complex curved surface (100) corresponding to the i-th path, and creating the complex curved surface by a set of these points.
摘要:
A method and apparatus for specifying a three-dimensional curve having steps of entering data specifying a first projection curve (CV.sub.1) and a second projection curve (CV.sub.2) is obtained when a three-dimensional curve (31a) is projected onto two adjacent planes (e.g., an XY plane and a YZ plane) in a rectangular coordinate system. The method also includes finding coordinate values (a.sub.i, b.sub.i) of an i-th (i=1, 2 . . . ) partition point P.sub.i from among partition points partitioning the first projection curve (CV.sub.1) into a number of line segments and finding coordinate values (b.sub.i,c.sub.i) of a point Q.sub.i on the second projection curve (CV.sub.2) having a coordinate value b.sub.i on a common axis (Y axis) among coordinate axes of the two adjacent planes. The three-dimensional curve (31a) is specified by a collection of points (R.sub.i) having the three-dimensional coordinate values (a.sub.i, b.sub.i, c.sub.i).
摘要:
A method of controlling a comb-cutter lathe in which one face of a tool rest (TBS) is provided with two or more juxtaposed tools (TL1, TL2) for subjecting a workpiece (WK) to machining by using: (1) predetermined tools in succession, (2) part dimensions, (3) a tool selection sequence, (4) a machining start location for each tool, and (5) mounting dimension information measured from a reference point on the tool rest to a distal end of each tool. Machining is sequentially performed based on this information by predetermined tools at machining locations (P.sub.5 -P.sub.4 -P.sub.3 -P.sub.2 -P.sub.1 ; P.sub.6 -P.sub.7 -P.sub.8 -P.sub.9 -P.sub.10) assigned to the tools, and after machining is completed by a first tool (TL1), the tool rest (TBS) is moved to position the next tool (TL2) at a machining location and machining is performed by that tool. The method includes moving the tool rest along a Z axis to a point P.sub.r at which none of the tools (TL1, TL2) will contact the workpiece (WK) when the tool rest (TBS) is moved in a direction (X-axis direction) at right angles to the longitudinal direction (Z-axis direction) of the workpiece, and thereafter moving the tool rest along the X axis to a point P.sub.t at which an X-axis position of a selected tool coincides with an X-axis coordinate value of a position at which machining is to be started by the selected tool, and thenforth performing machining using the selected tool.