Abstract:
A growing need for inferencing to be run on fog devices exists, in order to reduce the upstream network traffic. However, being computationally constrained in nature, executing complex deep inferencing models on such devices has been proved difficult. A system and method for partitioning of deep convolution neural network for execution of computationally constraint devices at a network edge has been provided. The system is configured to use depth wise input partitioning of convolutional operations in deep convolutional neural network (DCNN). The convolution operation is performed based on an input filter depth and number of filters for determining the appropriate parameters for partitioning based on an inference speedup method. The system uses a master-slave network for partitioning the input. The system is configured to address these problems by depth wise partitioning of input which ensures speedup inference of convolution operations by reducing pixel overlaps.
Abstract:
A data driven approach for fault detection in robotic actuation is disclosed. Here, a set of robotic tasks are received and analyzed by a Deep Learning (DL) analytics. The DL analytics includes a stateful (Long Short Term Memory) LSTM. Initially, the stateful LSTM is trained to match a set of activities associated with the robots based on a set of tasks gathered from the robots in a multi robot environment. Here, the stateful LSTM utilizes a master slave framework based load distribution technique and a probabilistic trellis approach to predict a next activity associated with the robot with minimum latency and increased accuracy. Further, the predicted next activity is compared with an actual activity of the robot to identify any faults associated robotic actuation.
Abstract:
In current distributed simultaneous localization and mapping (SLAM) implementations on multiple robots in a robotic cluster, failure of a leader robot terminates a map building process between multiple robots. Therefore, a technique for fault-tolerant SLAM in robotic clusters is disclosed. In this technique, robotic localization and mapping SLAM is executed in a resource constrained robotic cluster such that the distributed SLAM is executed in a reliable fashion and self-healed in case of failure of the leader robot. To ensure fault tolerance, the robots are enabled, by time series analysis, to find their individual failure probabilities and use that to enhance cluster reliability in a distributed manner.
Abstract:
A system and method for offloading scalable robotic tasks in a mobile robotics framework. The system comprises a cluster of mobile robots and they are connected with a back-end cluster infrastructure. It receives scalable robotic tasks at a mobile robot of the cluster. The scalable robotics tasks include building a map of an unknown environment by using the mobile robot, navigating the environment using the map and localizing the mobile robot on the map. Therefore, the system estimate the map of an unknown environment and at the same time it localizes the mobile robot on the map. Further, the system analyzes the scalable robotics tasks based on computation, communication load and energy usage of each scalable robotic task. And finally the system priorities the scalable robotic tasks to minimize the execution time of the tasks and partitioning the SLAM with computation offloading in edge network and mobile cloud server setup.
Abstract:
Systems and methods for generating control system solutions for robotics environments is provided. The traditional systems and methods provide robotics solutions but specialized to only a particular robotic application, domain, and selected structure. The embodiments of the proposed disclosure provide for generating one or more control system solutions for a plurality of robotics environment by acquiring a robotics domain knowledge corresponding to the plurality of robotics environments; extracting one or more solution specifications based upon the robotics domain knowledge; translating the one or more solution specifications into one or more design solutions; generating, the one or more control system solutions for the plurality of robotics environments; and optimizing the one or more control system solutions generated by performing, based upon a set of task execution logs executed, a close loop verification to validate a plurality of commands and a plurality of state transitions executing in the plurality of robotics environments.
Abstract:
Path planning for a robot is a compute intensive task. For a dynamic environment this is more cumbersome where position and orientation of objects changes often. Embodiments of the present disclosure provide systems and methods for context based path planning for vector navigation in hexagonal spatial maps. A 2-D environment is represented into a hexagonal grid map that includes hexagonal grid cells, objects are identified based on a comparison of RGB value associated with contiguous cells. Candidate contexts are determined based on objects identified. The hexagonal grid map is rotated at various angles and compared with pre-defined map(s) to determine quantitative measure of similarity for contexts identification from the candidate contexts, based upon which a path is dynamically planned for easy and efficient vector navigation within the hexagonal grid map. The embodiments further enable generating paths for different contexts using navigable common object(s) identified between intersections of the different contexts.
Abstract:
Cloud robotics infrastructures generally support heterogeneous services that are offered by heterogeneous resources whose reliability or availability also varies widely with varying lifetime. For such systems, defining a static redundancy configuration for all services is difficult and often biased. Also, it is not feasible to define a redundancy configuration separately for each unique service. Therefore, in the present disclosure a trade-off between the two is ensured by providing At-most M-Modular Flexible Redundancy Model wherein an exact degree of redundancy is defined and is given to each service in a heterogeneous service environment and monitoring each task and subtask status to ensure that each subtask gets accomplished thereby enabling the tuning of the tradeoff between redundancy and cost and determining efficiency of the system by estimating number of resources utilized to complete specific subtask and comparing the resources utilization with the exact degree of redundancy defined.
Abstract:
A method comprises, receiving, at each of a plurality of computing devices, a task execution estimation request message from a central server, the task execution estimation request message comprising a worst-case execution time (WCET) corresponding to the computing device. The method further comprises, computing, by each of the plurality of computing devices, an estimate task execution time for the task based on the WCET and a state transition model corresponding to the computing device, wherein the state transition model indicates available processing resources corresponding to the computing device. Further, the method comprises transmitting, by each of the plurality of computing devices, the estimate task execution time to the central server for allocation of the task to a computing device from amongst the plurality of computing devices based on the estimate task execution time corresponding to the computing device.
Abstract:
Methods and devices for controlling execution of a data analytics application on a computing device are described. The devices include an alert app to prompt a user on system load and to recommend the user for proactively controlling the execution of a set of processes to reclaim computational resources required for execution of the data analytics application on the devices.
Abstract:
Described herein, are methods and devices for execution of a task in a grid computing system. According to an implementation, free time-slots are identified and durations of the free time-slots are estimated, by an edge device, for execution of a sub-task. The free time-slots are indicative of an idle state of the edge device. At least one computation capability parameter of the edge device is determined by the edge device for execution of a sub-task during the free time-slots. An advertisement profile having at least one free time-slot, and the duration and the at least one computation capability parameter associated with the at least one free time-slot is created by the edge device. The advertisement profile is provided by the edge device to grid servers in the grid computing system for partitioning a main task to create a sub-task executable by the edge device.