摘要:
An integrated circuit containing a gate controlled voltage divider having an upper resistor on field oxide in series with a transistor switch in series with a lower resistor. A resistor drift layer is disposed under the upper resistor, and the transistor switch includes a switch drift layer adjacent to the resistor drift layer, separated by a region which prevents breakdown between the drift layers. The switch drift layer provides an extended drain or collector for the transistor switch. A sense terminal of the voltage divider is coupled to a source or emitter node of the transistor and to the lower resistor. An input terminal is coupled to the upper resistor and the resistor drift layer. A process of forming the integrated circuit containing the gate controlled voltage divider.
摘要:
A protection circuit for a DMOS transistor comprises an anode circuit having a first heavily doped region of a first conductivity type (314) formed within and electrically connected to a first lightly doped region of the second conductivity type (310, 312). A cathode circuit having a plurality of third heavily doped regions of the first conductivity type (700) within a second heavily doped region of the second conductivity type (304). A first lead (202) is connected to each third heavily doped region (704) and connected to the second heavily doped region by at least three spaced apart connections (702) between every two third heavily doped regions. An SCR (400, 402) is connected between the anode circuit and the cathode circuit. The DMOS transistor has a drain (310, 312, 316) connected to the anode circuit and a source (304) connected to the cathode circuit.
摘要:
An integrated circuit containing a diode with a drift region containing a first dopant type plus scattering centers. An integrated circuit containing a DEMOS transistor with a drift region containing a first dopant type plus scattering centers. A method for designing an integrated circuit containing a DEMOS transistor with a counter doped drift region.
摘要:
An integrated circuit containing an MOS transistor with a trenched gate abutting an isolation dielectric layer over a drift region. The body well and source diffused region overlap the bottom surface of the gate trench. An integrated circuit containing an MOS transistor with a first trenched gate abutting an isolation dielectric layer over a drift region, and a second trenched gate located over a heavily doped buried layer. The buried layer is the same conductivity type as the drift region. A process of forming an integrated circuit containing an MOS transistor, which includes an isolation dielectric layer over a drift region of a drain of the transistor, and a gate formed in a gate trench which abuts the isolation dielectric layer. The gate trench is formed by removing substrate material adjacent to the isolation dielectric layer.
摘要:
A method is provided of forming a semiconductor device. A substrate is provided having a dielectric layer formed thereover. The dielectric layer covers a protected region of the substrate, and has a first opening exposing a first unprotected region of the substrate. A first dopant is implanted into the first unprotected region through the first opening in the dielectric layer, and into the protected region through the dielectric layer.
摘要:
An electronic device has a plurality of trenches formed in a semiconducting layer. A vertical drift region is located between and adjacent the trenches. An electrode is located within each trench, the electrode having a gate electrode section and a field plate section. A graded field plate dielectric is located between the field plate section and the vertical drift region.
摘要:
A LDMOS transistor having a channel region located between an outer boundary of an n-type region and an inner boundary of a p-body region. A width of the LDMOS channel region is less than 80% of a distance between an outer boundary of an n+-type region and the inner boundary of a p-body region. Also, a method for making a LDMOS transistor where the n-type dopants are implanted at an angle that is greater than an angle used to implant the p-type dopants. Furthermore, a VDMOS having first and second channel regions located between an inner boundary of a first and second p-body region and an outer boundary of an n-type region of the first and second p-body regions. The width of the first and second channel regions of the VDMOS is less than 80% of a distance between the inner boundary of the first and second p-body regions and an outer boundary of an n+-type region of the first and second p-body regions. Moreover, a method for making a VDMOS transistor where the n-type dopants are implanted at an angle that is greater than an angle used to implant the p-type dopants.
摘要:
A LDMOS transistor having a channel region located between an outer boundary of an n-type region and an inner boundary of a p-body region. A width of the LDMOS channel region is less than 80% of a distance between an outer boundary of an n+-type region and the inner boundary of a p-body region. Also, a method for making a LDMOS transistor where the n-type dopants are implanted at an angle that is greater than an angle used to implant the p-type dopants. Furthermore, a VDMOS having first and second channel regions located between an inner boundary of a first and second p-body region and an outer boundary of an n-type region of the first and second p-body regions. The width of the first and second channel regions of the VDMOS is less than 80% of a distance between the inner boundary of the first and second p-body regions and an outer boundary of an n+-type region of the first and second p-body regions. Moreover, a method for making a VDMOS transistor where the n-type dopants are implanted at an angle that is greater than an angle used to implant the p-type dopants.
摘要:
A method is provided of forming a semiconductor device. A substrate is provided having a dielectric layer formed thereover. The dielectric layer covers a protected region of the substrate, and has a first opening exposing a first unprotected region of the substrate. A first dopant is implanted into the first unprotected region through the first opening in the dielectric layer, and into the protected region through the dielectric layer.
摘要:
A LDMOS transistor having a channel region located between an outer boundary of an n-type region and an inner boundary of a p-body region. A width of the LDMOS channel region is less than 80% of a distance between an outer boundary of an n+-type region and the inner boundary of a p-body region. Also, a method for making a LDMOS transistor where the n-type dopants are implanted at an angle that is greater than an angle used to implant the p-type dopants. Furthermore, a VDMOS having first and second channel regions located between an inner boundary of a first and second p-body region and an outer boundary of an n-type region of the first and second p-body regions. The width of the first and second channel regions of the VDMOS is less than 80% of a distance between the inner boundary of the first and second p-body regions and an outer boundary of an n+-type region of the first and second p-body regions. Moreover, a method for making a VDMOS transistor where the n-type dopants are implanted at an angle that is greater than an angle used to implant the p-type dopants.