摘要:
The subject invention provides unique biological alternatives for pest control. More specifically, the present invention relates to novel pesticidal proteins, novel sources of pesticidal proteins, polynucleotides that encode such toxins, and to methods of using these toxins to control insects and other plant pests. The subject invention relates to the surprising discovery that Paenibacillus species, and proteins therefrom, have toxicity to lepidopterans. There have been no known reports of a Paenibacillus species, strain, or protein having toxicity to lepidopterans. This is also the first known example of a Paenibacillus Cry protein that is toxic to lepidopterans. Furthermore, this is the first known report of a Paenibacillus having toxin complex (TC)-like proteins. The DAS1529 isolate disclosed here is also the first known example of a natural bacterium that produces both a Cry toxin and TC proteins. The subject invention also relates to new classes of Cry and TC proteins that are pesticidally active.
摘要:
A spread spectrum communications system using long, scalable PN sequences to achieve variable communication rates using a low-complexity and scalable matched filter architecture to provide a large processing gain, robust recovery of multiple devices in long reach, high ambient-noise environments.
摘要:
A wide area location and telemetry system may include a wide area location and telemetry system server that is configured to determine wide area location and telemetry system data about an object when the object is located within the coverage area of the wide area location and telemetry system. The wide area location and telemetry system server may also be configured to receive localized location and telemetry system data about the object when the object is located within the coverage area of a localized location and telemetry system. The wide area location and telemetry system may also include a database and a database manager. The database manager may be configured to store the wide area location and telemetry system data and the localized location and telemetry system data in the database.
摘要:
A spread spectrum communications system using long, scalable PN sequences to achieve variable communication rates using a low-complexity and scalable matched filter architecture to provide a large processing gain, robust recovery of multiple devices in long reach, high ambient-noise environments.
摘要:
A wide area location and telemetry system may include a wide area location and telemetry system server that is configured to determine wide area location and telemetry system data about an object when the object is located within the coverage area of the wide area location and telemetry system. The wide area location and telemetry system server may also be configured to receive localized location and telemetry system data about the object when the object is located within the coverage area of a localized location and telemetry system. The wide area location and telemetry system may also include a database and a database manager. The database manager may be configured to store the wide area location and telemetry system data and the localized location and telemetry system data in the database.
摘要:
A transmitter for a spread spectrum communications system may include a data source, a first multiplier/mixer spreading data from said data source with a first pseudo noise source, a second multiplier/mixer spreading data from said first mixer with a second pseudo noise source, and an RF transmitter. A receiver for a spread spectrum communications system may include an RF receiver, a first matched filter receiving data from said RF receiver, a plurality of phase/frequency shifters receiving a signal from said first matched filter, a plurality of second matched filters receiving data from said plurality of phase/frequency shifters, and an equalizer/decoder receiving signals from said plurality of second matched filters.
摘要:
A spread spectrum communications system using long, scalable PN sequences to achieve variable communication rates using a low-complexity and scalable matched filter architecture to provide a large processing gain, robust recovery of multiple devices in long reach, high ambient-noise environments.
摘要:
A system for wireless asset tracking is disclosed. The system includes a plurality of mobile devices. Each mobile device performs two spreading operations with two distinct PN codes, a first PN code and a second PN code. Data is transmitted by each mobile device using a burst direct sequence spread spectrum radio signal. The system also includes at least three base stations. Each base station is configured to receive the burst direct sequence spread spectrum radio signals from the mobile devices which includes decoding the signals by first de-spreading with the second PN code and second de-spreading with the first PN code. Each base station is further configured to add a timestamp to each data packet received. A system for calculating the location of the mobile devices creates location information for each mobile device by calculating the time difference of arrival of received bursts for each base station.
摘要:
A system for wireless asset tracking is disclosed. The system includes a plurality of mobile devices. Each mobile device performs two spreading operations with two distinct PN codes, a first PN code and a second PN code. Data is transmitted by each mobile device using a burst direct sequence spread spectrum radio signal. The system also includes at least three base stations. Each base station is configured to receive the burst direct sequence spread spectrum radio signals from the mobile devices which includes decoding the signals by first de-spreading with the second PN code and second de-spreading with the first PN code. Each base station is further configured to add a timestamp to each data packet received. A system for calculating the location of the mobile devices creates location information for each mobile device by calculating the time difference of arrival of received bursts for each base station.
摘要:
A spread spectrum communications system uses long, scalable PN sequences to achieve variable communication rates. A low-complexity and scalable matched filter architecture is used to provide a large processing gain and robust recovery of multiple devices in long reach, high ambient-noise environments. The spread spectrum communications system includes a transmitter and a receiver. The receiver includes an RF receiver and a first matched filter receiving data from the RF receiver. A plurality of phase/frequency shifters receives a signal from the first matched filter. A plurality of second matched filters receive data from the plurality of phase/frequency shifters. An equalizer/decoder receives signals from the plurality of phase/frequency shifters.