摘要:
An object is to provide an insulating film for a semiconductor device which has characteristics of a low permittivity, a low leakage current, and a high mechanical strength, undergoes less change in these characteristics with the elapse of time, and has an excellent water resistance, as well as to provide a process and an apparatus for producing the insulating film for a semiconductor device, a semiconductor device, and a process for producing the semiconductor device. A gas containing a raw material gas which gasified a predetermined alkylborazine compound is supplied in a chamber (2); an electromagnetic wave is introduced into the chamber (2) using with an inductive coupling type plasma generation mechanism (4, 5, 6) to convert the gas into a plasma; a substrate (8) is placed in a plasma diffusion region of the plasma; gas-phase polymerization is performed with borazine skeletal molecules, as a fundamental unit, dissociated from the alkylborazine compound by the plasma so as to form the insulating film for semiconductor devices on the substrate (8).
摘要:
An object to provide an insulating film for a semiconductor device, which has characteristics of low permittivity, a low leak current, and high mechanical strength, undergoes small time-dependent change of these characteristics, and has excellent water resistance, and to provide a manufacturing apparatus of the same, and a manufacturing method of the semiconductor device using the insulating film. The production process comprises a film forming step of supplying a mixed gas containing a carrier gas and a raw material gas, which is a gasified material having borazine skeletal molecules, into a chamber, causing the mixed gas to be in a plasma state, applying a bias to the substrate placed in the chamber, and carrying out gas-phase polymerization by using the borazine skeletal molecule as a fundamental unit so as to form the insulating film on the substrate; and a reaction promoting step of, after the film forming step, bringing the bias applied to the substrate to a different magnitude from the bias in the film forming step, supplying the mixed gas while gradually reducing only the raw material gas, which is the gasified material having the borazine skeletal molecules, treating the insulating film with a plasma mainly comprising the carrier gas.
摘要:
A low dielectric material is produced by using a composition including a borazine ring-containing compound and a compound represented by the following formula as a solvent, and/or by annealing a composition comprising a borazine ring-containing compound under atmosphere of oxygen concentration not higher than 0.1 vol % at 200 to 600° C. In the following formula, Ra and Rc independently represent alkyl group or acyl group; Rb represents hydrogen atom or alkyl group; and n represents an integer of 1 to 5.
摘要:
A low dielectric material is produced by using a composition including a borazine ring-containing compound and a compound represented by the following formula as a solvent, and/or by annealing a composition comprising a borazine ring-containing compound under atmosphere of oxygen concentration not higher than 0.1 vol % at 200 to 600° C. In the following formula, Ra and Rc independently represent alkyl group or acyl group; Rb represents hydrogen atom or alkyl group; and n represents an integer of 1 to 5.
摘要翻译:通过使用包含含环硼氮环的化合物和下式表示的化合物作为溶剂的组合物和/或通过在氧浓度不高的气氛下退火含有环硼氮烷环化合物的组合物来制备低介电材料 在200至600℃下为0.1vol%以下。在下式中,R a和R c独立地表示烷基或酰基; R b表示氢原子或烷基; n表示1〜5的整数。
摘要:
A low dielectric material is produced by using a composition including a borazine ring-containing compound and a compound represented by the following formula as a solvent, and/or by annealing a composition comprising a borazine ring-containing compound under atmosphere of oxygen concentration not higher than 0.1 vol % at 200 to 600° C. In the following formula, Ra and Rc independently represent alkyl group or acyl group; Rb represents hydrogen atom or alkyl group; and n represents an integer of 1 to 5.
摘要:
In a synthesis of a borazine compound by a reaction of an alkali boron hydride represented by ABH4 (A represents lithium atom, sodium atom or potassium atom) and an amine salt represented by (RNH3)nX (R represents a hydrogen atom or an alkyl group, X represents a sulfate group or a halogen atom, and n is 1 or 2), or b) diborane (B2H6) and an amine represented by RNH2 (R represents a hydrogen atom or an alkyl group), a water content of raw material is controlled below a prescribed value; mixed solvents containing solvents each having a prescribed boiling point are used as a solvent for reaction; or a raw material is gradually fed to a reactor in a reaction. Or, a borazine compound is subjected to distillation purification treatment and filtration treatment. By such a method, a high purity of borazine compound can be produced safely and in a high yield.
摘要:
In a synthesis of a borazine compound by a reaction of an alkali boron hydride represented by ABH4 (A represents lithium atom, sodium atom or potassium atom) and an amine salt represented by (RNH3)nX (R represents a hydrogen atom or an alkyl group, X represents a sulfate group or a halogen atom, and n is 1 or 2), or b) diborane (B2H6) and an amine represented by RNH2 (R represents a hydrogen atom or an alkyl group), a water content of raw material is controlled below a prescribed value; mixed solvents containing solvents each having a prescribed boiling point are used as a solvent for reaction; or a raw material is gradually fed to a reactor in a reaction. Or, a borazine compound is subjected to distillation purification treatment and filtration treatment. By such a method, a high purity of borazine compound can be produced safely and in a high yield.
摘要:
In a synthesis of a borazine compound by a reaction of an alkali boron hydride represented by ABH4 (A represents lithium atom, sodium atom or potassium atom) and an amine salt represented by (RNH3)nX (R represents a hydrogen atom or an alkyl group, X represents a sulfate group or a halogen atom, and n is 1 or 2), or b) diborane (B2H6) and an amine represented by RNH2 (R represents a hydrogen atom or an alkyl group), a water content of raw material is controlled below a prescribed value; mixed solvents containing solvents each having a prescribed boiling point are used as a solvent for reaction; or a raw material is gradually fed to a reactor in a reaction. Or, a borazine compound is subjected to distillation purification treatment and filtration treatment. By such a method, a high purity of borazine compound can be produced safely and in a high yield.
摘要:
In a synthesis of a borazine compound by a reaction of an alkali boron hydride represented by ABH4 (A represents lithium atom, sodium atom or potassium atom) and an amine salt represented by (RNH3)nX (R represents a hydrogen atom or an alkyl group, X represents a sulfate group or a halogen atom, and n is 1 or 2), or b) diborane (B2H6) and an amine represented by RNH2 (R represents a hydrogen atom or an alkyl group), a water content of raw material is controlled below a prescribed value; mixed solvents containing solvents each having a prescribed boiling point are used as a solvent for reaction; or a raw material is gradually fed to a reactor in a reaction. Or, a borazine compound is subjected to distillation purification treatment and filtration treatment. By such a method, a high purity of borazine compound can be produced safely and in a high yield.
摘要:
An object is to provide an insulating film for a semiconductor device which has characteristics of a low permittivity, a low leakage current, and a high mechanical strength, undergoes less change in these characteristics with the elapse of time, and has an excellent water resistance, as well as to provide a process and an apparatus for producing the insulating film for a semiconductor device, a semiconductor device, and a process for producing the semiconductor device. A gas containing a raw material gas which gasified a predetermined alkylborazine compound is supplied in a chamber (2); an electromagnetic wave is introduced into the chamber (2) using with an inductive coupling type plasma generation mechanism (4, 5, 6) to convert the gas into a plasma; a substrate (8) is placed in a plasma diffusion region of the plasma; gas-phase polymerization is performed with borazine skeletal molecules, as a fundamental unit, dissociated from the alkylborazine compound by the plasma so as to form the insulating film for semiconductor devices on the substrate (8).