Abstract:
In accordance with an example, an integrated circuit includes a linear combiner having an input for receiving a signal. The linear combiner also has a plurality of operator circuits for applying weighting factors to the signal, in which a first operator circuit in the plurality of operator circuits performs a first operation on the signal using a first sub-weight of one of the weighting factors to provide a first tile output and a second operator circuit in the plurality of operator circuits performs a second operation on the signal using a second sub-weight of the one of the weighting factors to provide a second tile output. The linear combiner also has an adder having a first input coupled to receive the first tile output and the second tile outputs and providing a combined output.
Abstract:
Methods and apparatus for reducing non-linearity in analog to digital converters are disclosed. An example apparatus includes an analog-to-digital converter to convert an analog signal into a digital signal; and a non-linearity corrector coupled to the analog-to-digital converter to determine a derivative of the digital signal; determine cross terms including a combination of the digital signal and the derivative of the digital signal; and determine a non-linearity term corresponding to a combination of the cross terms.
Abstract:
A Global Navigation Satellite System (GNSS) receiver determines a measurement error covariance from a reference position and a set of measured pseudoranges from a set of GNSS satellites. The position and velocity solution is determined from the measurement error covariance and the set of measured pseudoranges. The measurement error covariance is determined as function of the difference between a reference pseudorange and measured pseudorange. The reference pseudorange is computed from the reference position to a satellite. The measurement error covariance is determined as function of the difference only if the measured pseudorange is greater than the reference pseudorange. The GNSS receiver also determines measurement error covariance as function of one or more of correlation peak shape, difference, the correlation peak shape, a received signal to noise ratio and a tracking loop error.
Abstract:
An electrical system includes a transceiver with an IQ estimator and an IQ mismatch corrector. The electrical system also includes an antenna coupled to the transceiver. The IQ estimator is configured to perform frequency-domain IQ mismatch analysis to determine an IQ mismatch estimate at available frequency bins of a baseband data signal. The IQ mismatch corrector is configured to correct the baseband data signal based on the IQ mismatch estimate.
Abstract:
An IQ estimation module comprising a powerup state IQ estimator configured to generate powerup state IQ estimates based on a powerup calibration of the IQ estimation module, a steady state IQ estimator configured to generate steady state IQ estimates during a steady state operation of the IQ estimation module, and an IQ estimate extender configured to determine differences between the powerup state IQ estimates and steady state IQ estimates at their respective frequency bins and adjust the powerup state IQ estimates to improve the accuracy of IQ estimates.
Abstract:
A channel estimation method and system for IQ imbalance and local oscillator leakage correction, wherein an example of a channel estimation system comprising a calibrating signal generator configured to generate at least one pair of calibrating signals, a feedback IQ mismatch estimator configured to measure feedback IQ mismatch estimates based on the pair of calibrating signals, and a calibrating signal based channel estimator configured to generate a channel estimate based on the pair of calibrating signals and the feedback IQ mismatch estimates.
Abstract:
In accordance with an example, an integrated circuit includes a linear combiner having an input for receiving a signal. The linear combiner also has a plurality of operator circuits for applying weighting factors to the signal, in which a first operator circuit in the plurality of operator circuits performs a first operation on the signal using a first sub-weight of one of the weighting factors to provide a first tile output and a second operator circuit in the plurality of operator circuits performs a second operation on the signal using a second sub-weight of the one of the weighting factors to provide a second tile output. The linear combiner also has an adder having a first input coupled to receive the first tile output and the second tile outputs and providing a combined output.
Abstract:
A Global Navigation Satellite System (GNSS) receiver determines a measurement error covariance from a reference position and a set of measured pseudoranges from a set of GNSS satellites. The position and velocity solution is determined from the measurement error covariance and the set of measured pseudoranges. The measurement error covariance is determined as function of the difference between a reference pseudorange and measured pseudorange. The reference pseudorange is computed from the reference position to a satellite. The measurement error covariance is determined as function of the difference only if the measured pseudorange is greater than the reference pseudorange. The GNSS receiver also determines measurement error covariance as function of one or more of correlation peak shape, difference, the correlation peak shape, a received signal to noise ratio and a tracking loop error.
Abstract:
Methods, apparatus, systems and articles of manufacture to increase an integrity of mismatch corrections in an interleaved analog to digital converter are disclosed. An example apparatus includes an instantaneous mismatch estimator that uses an output of an interleaved analog to digital converter to identify a mismatch estimate between two or more component analog to digital converters of the interleaved analog to digital converter. An integrity monitor is to cause the instantaneous mismatch estimator to avoid incorrectly providing the mismatch estimate to a filter, the integrity monitor to instruct the filter to remove the mismatch estimate when the mismatch estimate is detected to be inaccurate.
Abstract:
A mismatch corrector can include a correction path comprising a plurality of parallel branches that each includes a correction filter that applies a respective one of a plurality of time domain filter coefficients that corresponds to a function of a mismatch profile of an interleaved analog-to-digital (IADC) signal on the IADC signal. The mismatch corrector can also include a delay path that delays the IADC signal by a predetermined number of samples to provide a delayed version of the IADC signal. The mismatch corrector can further include a summer to subtract an output of each correction filter from the delayed version of the IADC signal to generate a corrected IADC signal.