Abstract:
A laser source assembly for providing an assembly output beam includes a first emitter, a second emitter, and a third emitter. The first emitter emits a first beam along a first beam axis that is substantially parallel to and spaced apart from an assembly axis. The second emitter emits a second beam along a second beam axis that is substantially parallel to and spaced apart from the assembly axis. The third emitter emits a third beam along a third beam axis that is substantially parallel to and spaced apart from the assembly axis. The first beam axis, the second beam axis and the third beam axis are positioned spaced apart about and substantially equidistant from the assembly axis.
Abstract:
A compact mid-IR laser device utilizes a quantum cascade laser to provide mid-IR frequencies suitable for use in molecular detection by signature absorption spectra. The compact nature of the device is obtained owing to an efficient heat transfer structure, the use of a small diameter aspheric lens and a monolithic assembly structure to hold the optical elements in a fixed position relative to one another. The compact housing size may be approximately 20 cm×20 cm×20 cm or less. Efficient heat transfer is achieved using a thermoelectric cooler TEC combined with a high thermal conductivity heat spreader onto which the quantum cascade laser is thermally coupled. The heat spreader not only serves to dissipate heat and conduct same to the TEC, but also serves as an optical platform to secure the optical elements within the housing in a fixed relationship relative on one another. A small diameter aspheric lens may have a diameter of 10 mm or less and is positioned to provided a collimated beam output from the quantum cascade laser. The housing is hermetically sealed to provide a rugged, light weight portable MIR laser source.
Abstract:
A lens may operate in the mid-IR spectral region and couple highly divergent beams into highly collimated beams. In combination with a light source having a characteristic output beam, the lens may provide highly stable, miniaturized mid-IR sources that deliver optical beams. An advanced mounting system may provide long term sturdy mechanical coupling and alignment to reduce operator maintenance. In addition, devices may also support electrical and thermal subsystems that are delivered via these mounting systems. A mid-IR singlet lens having a numerical aperture greater than about 0.7 and a focal length less than 10 mm may be combined with a quantum well stack semiconductor based light source such that the emission facet of the semiconductor lies in the focus of the lens less than 2 mm away from the lens surface. Together, these systems may provide a package that is highly portable and robust, and easily integrated with external optical systems.
Abstract:
A compact mid-IR laser device utilizes a quantum cascade laser to provide mid-IR frequencies suitable for use in molecular detection by signature absorption spectra. The compact nature of the device is obtained owing to an efficient heat transfer structure, the use of a small diameter aspheric lens and a monolithic assembly structure to hold the optical elements in a fixed position relative to one another. The compact housing size may be approximately 20 cm×20 cm×20 cm or less. Efficient heat transfer is achieved using a thermoelectric cooler TEC combined with a high thermal conductivity heat spreader onto which the quantum cascade laser is thermally coupled. The heat spreader not only serves to dissipate heat and conduct same to the TEC, but also serves as an optical platform to secure the optical elements within the housing in a fixed relationship relative on one another. A small diameter aspheric lens may have a diameter of 10 mm or less and is positioned to provided a collimated beam output from the quantum cascade laser. The housing is hermetically sealed to provide a rugged, light weight portable MIR laser source.
Abstract:
A compact mid-IR laser device utilizes a quantum cascade laser to provide mid-IR frequencies suitable for use in molecular detection by signature absorption spectra. The compact nature of the device is obtained owing to an efficient heat transfer structure, the use of a small diameter aspheric lens and a monolithic assembly structure to hold the optical elements in a fixed position relative to one another. The compact housing size may be approximately 20 cm×20 cm×20 cm or less. Efficient heat transfer is achieved using a thermoelectric cooler TEC combined with a high thermal conductivity heat spreader onto which the quantum cascade laser is thermally coupled. The heat spreader not only serves to dissipate heat and conduct same to the TEC, but also serves as an optical platform to secure the optical elements within the housing in a fixed relationship relative on one another. A small diameter aspheric lens may have a diameter of 10 mm or less and is positioned to provided a collimated beam output from the quantum cascade laser. The housing is hermetically sealed to provide a rugged, light weight portable MIR laser source.
Abstract:
A laser source assembly (10) for providing an assembly output beam (12) includes a first MIR laser source (352A), a second MIR laser source (352B), and a beam combiner (244). The first MIR laser source (352A) emits a first MIR beam (356A) that is in the MIR range and the second MIR laser source (352B) emits a second MIR beam (356B) that is in the MIR range. Further, the beam combiner (244) spatially combines the first MIR beam (356A) and the second MIR beam (356B) to provide the assembly output beam (12). With this design, a plurality MIR laser sources (352A) (352B) can be packaged in a portable, common module, each of the MIR laser sources (352A) (352B) generates a narrow linewidth, accurately settable MIR beam (356A) (356B), and the MIR beams (356A) (356B) are combined to create a multiple watt assembly output beam (12) having the desired power. The beam combiner (244) can includes a combiner lens (364) and an output optical fiber (366). In this embodiment, the MIR beams (356A) (356B) are directed at the combiner lens (364) and the combiner lens (364) focuses the MIR beams (356A) (356B) onto a fiber facet (366A) of the output optical fiber (366). Moreover, the output optical fiber (366) can include an AR coating (366B) on the fiber facet (366A).
Abstract:
A lens may operate in the mid-IR spectral region and couple highly divergent beams into highly collimated beams. In combination with a light source having a characteristic output beam, the lens may provide highly stable, miniaturized mid-IR sources that deliver optical beams. An advanced mounting system may provide long term sturdy mechanical coupling and alignment to reduce operator maintenance. In addition, devices may also support electrical and thermal subsystems that are delivered via these mounting systems. A mid-IR singlet lens having a numerical aperture greater than about 0.7 and a focal length less than 10 mm may be combined with a quantum well stack semiconductor based light source such that the emission facet of the semiconductor lies in the focus of the lens less than 2 mm away from the lens surface. Together, these systems may provide a package that is highly portable and robust, and easily integrated with external optical systems.
Abstract:
A compact mid-IR laser device utilizes a quantum cascade laser to provide mid-IR frequencies suitable for use in molecular detection by signature absorption spectra. The compact nature of the device is obtained owing to an efficient heat transfer structure, the use of a small diameter aspheric lens and a monolithic assembly structure to hold the optical elements in a fixed position relative to one another. The compact housing size may be approximately 20 cm×20 cm×20 cm or less. Efficient heat transfer is achieved using a thermoelectric cooler TEC combined with a high thermal conductivity heat spreader onto which the quantum cascade laser is thermally coupled.
Abstract:
Improved systems and methods allow users to filter air by installing an apparatus between the passenger space and the air circulating in from the outside of a vehicle, proximate to existing vents, or as a mechanically elegant improvement to new systems. A hinge mechanism allows a venting system to open reliably, and a filter element discretely cleans air passing through it.
Abstract:
A self-tapping screw includes a head, a shaft, a tapered end and a rounded distal tip. A thread includes a thread start on the tapered end. The axial position of the thread start and a first full thread, the radius of the round distal tip and the diameter of the tapered end at the thread start are controlled in relation to the screw size for consistent, improved screw performance.