Abstract:
An electrical connector system includes a circuit card assembly and a pluggable module. The circuit card assembly including a host circuit board, a socket connector mounted to the host circuit board, and a guide rail extending along the host circuit board. The socket connector has a socket substrate having upper contacts having mating interfaces being accessible from above the socket connector and being coplanar. The guide rail has a guide feature and a module actuator. The pluggable module includes a module body operatively engaging the guide rail to guide mating of the module body with the guide rail in a module mating direction. The pluggable module includes an actuation feature engaging the module actuator to force mating of module contacts with the upper contacts in a contact mating direction transverse to the module mating direction.
Abstract:
An integrated circuit socket includes a housing having a flat plate portion and a plurality of contacts disposed in the housing. The contacts each have a contact beam projecting outwardly from a first surface of the housing and a retained portion disposed in a passageway in the flat plate portion. The contact beam extends from the retained portion. The retained portion has a base portion with a flat-plate shape and a pair of side portions extending at an angle with respect to the base portion on a pair of opposite sides of the base portion. A cross-section of the retained portion parallel to the first surface has a U-shape.
Abstract:
A socket connector includes a socket assembly having a socket frame, a socket substrate coupled to the socket frame and socket contacts terminated to the socket substrate. The socket substrate has first and second upper mating areas including first and second socket substrate conductors for mating with an electronic package and an electrical component, respectively. The socket contacts define an interface with the electronic package. The socket assembly is configured to electrically connect the electronic package with both a host circuit board and the electrical component.
Abstract:
A socket connector includes a socket assembly having a socket substrate and socket contacts. The socket substrate has first and second upper mating areas and a first lower mating area. The socket substrate has first and second socket substrate conductors at the first and second upper mating areas, respectively, and third socket substrate conductors at the first lower mating area electrically connected to corresponding first socket substrate conductors. The first socket substrate conductors are electrically connected to an electronic package, the second socket substrate conductors are electrically connected to an electrical component and the third socket substrate conductors are electrically connected to a host circuit board. The socket assembly is configured to electrically connect the electronic package with both the host circuit board and the electrical component. The socket contacts have a terminating end terminated to corresponding first socket substrate conductors and a mating end mated to package contacts.
Abstract:
An electrical connector is disclosed having a plurality of contacts. The plurality of contacts includes contact ends positioned in two rows and terminating ends positioned in one row. A first grouping of the plurality of contacts includes units of two differential signal carrying contacts having signal carrying contact ends connected to two signal terminating ends on a one to one ratio. The first grouping also includes grounding contacts positioned adjacent to the signal carrying contacts, and having grounding contact ends connected to grounding terminating ends with a ratio of the number of grounding contact ends being greater than or equal to the number of grounding terminating ends.
Abstract:
A socket includes a flat-plate-shaped housing, a plurality of contacts supported by the flat-plate-shaped housing, a frame attached to the flat-plate-shaped housing and extending along the flat-plate-shaped housing, a plurality of first solder balls disposed on a lower surface of the flat-plate-shaped housing and facing a circuit board, and a plurality of second solder balls disposed on the lower surface of the flat-plate-shaped housing. The frame defines, in an in-plane direction of the flat-plate-shaped housing, a position of an electronic component having a lower surface including a plurality of pads configured to contact the contacts upon the electronic component being mounted. The first solder balls electrically connect to each of the contacts and electrically connect to the circuit board. The second solder balls are not electrically connected to the contacts.
Abstract:
An integrated circuit socket includes a housing having a flat plate portion and a plurality of contacts disposed in the housing. The contacts each have a contact beam projecting outwardly from a first surface of the housing and a retained portion disposed in a passageway in the flat plate portion. The contact beam extends from the retained portion. The retained portion has a base portion with a flat-plate shape and a pair of side portions extending at an angle with respect to the base portion on a pair of opposite sides of the base portion. A cross-section of the retained portion parallel to the first surface has a U-shape.