Abstract:
An intermediate component with an internal passageway includes a solid metallic additively manufactured component with an internal passageway in a near finished shape. The component has voids greater than 0 percent but less than approximately 15 percent by volume and up to 15 percent additional material by volume in the near finished shape compared to a desired finished configuration. Also included are a ceramic core disposed within the internal passageway of the component and an outer ceramic shell mold encasing an entirety of the component, such that an entire external surface of the component is covered by the outer ceramic shell mold.
Abstract:
A gas turbine engine component includes a wall that provides an exterior surface and an interior flow path surface. A film cooling hole extends through the wall and is configured to fluidly connect the interior flow path surface to the exterior surface. The film cooling hole has a pocket that faces the interior flow path and extends substantially in a longitudinal direction. The film cooling hole has a portion downstream from the pocket and is arranged at an angle relative to the longitudinal direction and extends to the exterior surface.
Abstract:
One embodiment includes a method to regenerate a component. The method includes additively manufacturing the component with at least a portion of the component in a near finished shape. The component is encased in a shell mold, the shell mold is cured, the encased component is placed in a furnace and the component is melted, the component is solidified in the shell mold, and the shell mold is removed from the solidified component.
Abstract:
A wall of a gas turbine engine is provided. The wall may comprise an external surface adjacent a gas path and an internal surface adjacent an internal flow path. A film hole may have an inlet at the internal surface and an outlet at the external surface. A flow accumulator adjacent the inlet may protrude from the internal surface. A method of making an engine component is also provided and comprises the step of forming a component wall comprising an accumulator on an internal surface and a film hole defined by the component wall. The film hole may include an opening adjacent the accumulator and defined by the internal surface.
Abstract:
A method of forming a metal single crystal turbine component with internal passageways includes forming a polycrystalline turbine blade with internal passageways by additive manufacturing and filling the passageways with a core ceramic slurry. The ceramic slurry is then treated to harden the core and the turbine component is encased in a ceramic shell which is treated to form a ceramic mold. The turbine component in the mold is then melted and directionally solidified in the form of a single crystal. The outer shell and inner ceramic core are then removed to form a finished single crystal turbine component with internal passageways.
Abstract:
A gas turbine engine component includes a wall that provides an exterior surface and an interior flow path surface. The wall has a wall thickness. A protrusion is arranged on the wall that extends a height beyond the wall thickness and provides a portion of the interior flow path surface. A film cooling hole that has an inlet is provided on the protrusion and extends to an exit on the exterior surface.
Abstract:
A gas turbine engine component includes a wall that provides an exterior surface and an interior flow path surface. A film cooling hole extends through the wall and is configured to fluidly connect the interior flow path surface to the exterior surface. The film cooling hole has a pocket that faces the interior flow path and extends substantially in a longitudinal direction. The film cooling hole has a portion downstream from the pocket and is arranged at an angle relative to the longitudinal direction and extends to the exterior surface.
Abstract:
A wall of a gas turbine engine is provided. The wall may comprise an external surface adjacent a gas path and an internal surface adjacent an internal flow path. A film hole may have an inlet at the internal surface and an outlet at the external surface. A flow accumulator adjacent the inlet may protrude from the internal surface. A method of making an engine component is also provided and comprises the step of forming a component wall comprising an accumulator on an internal surface and a film hole defined by the component wall. The film hole may include an opening adjacent the accumulator and defined by the internal surface.
Abstract:
An intermediate component with an internal passageway includes a solid metallic additively manufactured component with an internal passageway in a near finished shape. The component has voids greater than 0 percent but less than approximately 15 percent by volume and up to 15 percent additional material by volume in the near finished shape compared to a desired finished configuration. Also included are a ceramic core disposed within the internal passageway of the component and an outer ceramic shell mold encasing an entirety of the component, such that an entire external surface of the component is covered by the outer ceramic shell mold.
Abstract:
A method of forming a metal single crystal turbine component with internal passageways includes forming a polycrystalline turbine blade with internal passageways by additive manufacturing and filling the passageways with a core ceramic slurry. The ceramic slurry is then treated to harden the core and the turbine component is encased in a ceramic shell which is treated to form a ceramic mold. The turbine component in the mold is then melted and directionally solidified in the form of a single crystal. The outer shell and inner ceramic core are then removed to form a finished single crystal turbine component with internal passageways.