Abstract:
Some aspects of the present disclosure relate to accelerated imaging using variable-density sampling and compressed sensing with parallel imaging. In one embodiment, a method includes acquiring magnetic resonance data associated with a physiological activity in an area of interest of a subject. The acquiring includes performing accelerated variable-density sampling with phase-contrast displacement encoding. The method also includes reconstructing, from the acquired magnetic resonance data, images corresponding to the physiological activity in the area of interest. The reconstructing includes performing parallel imaging and compressed sensing.
Abstract:
Systems and methods for simultaneous multi-slice imaging. In one embodiment, a method for magnetic resonance imaging of a region of interest of a subject includes simultaneously exciting multiple, different slice locations corresponding to a region of interest of a subject using a radio-frequency (rf) pulse, for obtaining multiple slices. The excitation phase is modulated between acquisitions using a phase cycling scheme configured to create signal cancellation of all but one slice of the multiple excited slices from the different slice locations. The method also includes applying an imaging pulse sequence using a spiral k-space trajectory to acquire image data from the multiple slices, for an image or series of images of the region of interest; and reconstructing, from the multiple slices, images of the region of interest, wherein the reconstructing recovers unaliased images from the different slice locations.
Abstract:
Some aspects of the present disclosure relate to systems and methods for three-dimensional spiral perfusion imaging. In one embodiment, a method for perfusion imaging of a subject includes acquiring perfusion imaging data associated with the heart of a subject. The acquiring includes applying an imaging pulse sequence with a three-dimensional stack-of-spirals trajectory. The method also includes reconstructing perfusion images from the acquired perfusion imaging data. The reconstructing includes parallel imaging and motion-guided compressed sensing. The method also includes determining, from the reconstructed perfusion images, absolute perfusion values based on time-intensity relationships to quantify myocardial blood flow of the heart of the subject, and generating a quantitative volumetric perfusion flow map based on the determined absolute perfusion values.
Abstract:
In one aspect, the disclosed technology relates to a method which, in one example embodiment, includes acquiring magnetic resonance imaging data for a plurality of images of the heart of a subject during free breathing of the subject. The method also includes generating an additional plurality of images with high tissue-blood contrast over the region of interest, and selecting a subset of images from the plurality of images, based upon a pre-determined quality metric of image similarity, to be used for non-rigid image registration. The method also includes aligning the subset of images by non-rigid image registration using a combination of the plurality of images and the additional plurality of images, and creating a parametric map from the aligned images.
Abstract:
Some aspects of the present disclosure relate to systems and methods for accelerated dynamic magnetic resonance imaging (MRI). In an example embodiment, a method includes acquiring undersampled MRI data corresponding to a set of images associated with an area of interest of a subject, and separating an image of the set of images into image regions. The method also includes performing motion tracking for each of the image regions, grouping the motion-tracked image regions into clusters, and applying a sparsity transform to the clusters, to form sparsity-exploited, transformed image regions. The method further includes forming a set of merged images from the plurality of sparsity-exploited, transformed image regions, and updating the set of merged images based on data fidelity, to form an updated set of estimated images.