Abstract:
In some aspects, the disclosed technology relates to reducing respiratory-induced motion artifacts for accelerated imaging. In one embodiment, magnetic resonance data may be acquired for an area of a subject containing the heart. The acquired data may include motion-corrupted data due to respiration of the subject. From the acquired data, an image may be independently reconstructed for each of a plurality of time frames, with each time frame corresponding to one of a plurality of heartbeats. A region containing the heart of the subject may be automatically detected in the reconstructed images, and rigid motion registration may be performed on the region of the reconstructed images containing the heart. Based on the rigid motion registration, a linear phase shift for motion correction may be determined. The linear phase shift may be applied to the motion-corrupted data to produce linear phase-shifted data, and a k-t image reconstruction may be performed on the linear phase-shifted data to produce motion-corrected images.
Abstract:
Systems and methods for performing ungated magnetic resonance imaging are disclosed herein. A method includes producing magnetic resonance image MRI data by scanning a target in a low magnetic field with a pulse sequence having a spiral trajectory; sampling k-space data from respective scans in the low magnetic field and receiving at least one field map data acquisition and a series of MRI data acquisitions from the respective scans; forming a field map and multiple sensitivity maps in image space from the field map data acquisition; forming target k-space data with the series of MRI data acquisitions; forming initial magnetic resonance images in the image domain by applying a Non-Uniform Fast Fourier Transform to the target k-space data; and forming reconstructed images with a low rank plus sparse (L+S) reconstruction algorithm applied to the initial magnetic resonance images.
Abstract:
Some aspects of the present disclosure relate a method for magnetic resonance imaging, which can include acquiring, by applying an imaging pulse sequence, magnetic resonance data associated with a region of interest of a subject. The imaging pulse sequence can include a plurality of RF pulses configured to generate a desired image contrast, and an outer-volume suppression (OVS) module to attenuate the signal outside the region of interest. The method can further include reconstructing, from the acquired magnetic resonance data, a plurality of reduced field of view (rFOV) magnetic resonance images corresponding to the region of interest.
Abstract:
In some aspects, the disclosed technology relates to reducing respiratory-induced motion artifacts for accelerated imaging. In one embodiment, magnetic resonance data may be acquired for an area of a subject containing the heart. The acquired data may include motion-corrupted data due to respiration of the subject. From the acquired data, an image may be independently reconstructed for each of a plurality of time frames, with each time frame corresponding to one of a plurality of heartbeats. A region containing the heart of the subject may be automatically detected in the reconstructed images, and rigid motion registration may be performed on the region of the reconstructed images containing the heart. Based on the rigid motion registration, a linear phase shift for motion correction may be determined. The linear phase shift may be applied to the motion-corrupted data to produce linear phase-shifted data, and a k-t image reconstruction may be performed on the linear phase-shifted data to produce motion-corrected images.
Abstract:
In one aspect, the disclosed technology relates to a method which, in one example embodiment, includes acquiring magnetic resonance imaging data for a plurality of images of the heart of a subject during free breathing of the subject. The method also includes generating an additional plurality of images with high tissue-blood contrast over the region of interest, and selecting a subset of images from the plurality of images, based upon a pre-determined quality metric of image similarity, to be used for non-rigid image registration. The method also includes aligning the subset of images by non-rigid image registration using a combination of the plurality of images and the additional plurality of images, and creating a parametric map from the aligned images.
Abstract:
Some aspects of the present disclosure relate a method for magnetic resonance imaging, which can include acquiring, by applying an imaging pulse sequence, magnetic resonance data associated with a region of interest of a subject. The imaging pulse sequence can include a plurality of RF pulses configured to generate a desired image contrast, and an outer-volume suppression (OVS) module to attenuate the signal outside the region of interest. The method can further include reconstructing, from the acquired magnetic resonance data, a plurality of reduced field of view (rFOV) magnetic resonance images corresponding to the region of interest.
Abstract:
Some aspects of the present disclosure relate to systems and methods for three-dimensional spiral perfusion imaging. In one embodiment, a method for perfusion imaging of a subject includes acquiring perfusion imaging data associated with the heart of a subject. The acquiring includes applying an imaging pulse sequence with a three-dimensional stack-of-spirals trajectory. The method also includes reconstructing perfusion images from the acquired perfusion imaging data. The reconstructing includes parallel imaging and motion-guided compressed sensing. The method also includes determining, from the reconstructed perfusion images, absolute perfusion values based on time-intensity relationships to quantify myocardial blood flow of the heart of the subject, and generating a quantitative volumetric perfusion flow map based on the determined absolute perfusion values.
Abstract:
Some aspects of the present disclosure relate to accelerated imaging using variable-density sampling and compressed sensing with parallel imaging. In one embodiment, a method includes acquiring magnetic resonance data associated with a physiological activity in an area of interest of a subject. The acquiring includes performing accelerated variable-density sampling with phase-contrast displacement encoding. The method also includes reconstructing, from the acquired magnetic resonance data, images corresponding to the physiological activity in the area of interest. The reconstructing includes performing parallel imaging and compressed sensing.
Abstract:
A computerized system and method of modeling myocardial tissue perfusion can include acquiring a plurality of original frames of magnetic resonance imaging (MRI) data representing images of a heart of a subject and developing a manually segmented set of ground truth frames from the original frames. Applying training augmentation techniques to a training set of the originals frame of MRI data can prepare the data for training at least one convolutional neural network (CNN). The CNN can segment the training set of frames according to the ground truth frames. Applying the respective input test frames to a trained CNN can allow for segmenting an endocardium layer and an epicardium layer within the respective images of the input test frames. The segmented images can be used in calculating myocardial blood flow into the myocardium from segmented images of the input test frames.
Abstract:
Systems and methods for performing ungated magnetic resonance imaging are disclosed herein. A method includes producing magnetic resonance image MRI data by scanning a target in a low magnetic field with a pulse sequence having a spiral trajectory; sampling k-space data from respective scans in the low magnetic field and receiving at least one field map data acquisition and a series of MRI data acquisitions from the respective scans; forming a field map and multiple sensitivity maps in image space from the field map data acquisition; forming target k-space data with the series of MRI data acquisitions; forming initial magnetic resonance images in the image domain by applying a Non-Uniform Fast Fourier Transform to the target k-space data; and forming reconstructed images with a low rank plus sparse (L+S) reconstruction algorithm applied to the initial magnetic resonance images.