Abstract:
Systems and methods for accelerated arterial spin labeling (ASL) using compressed sensing are disclosed. In one aspect, in accordance with one example embodiment, a method includes acquiring magnetic resonance data associated with an area of interest of a subject, wherein the area of interest corresponds to one or more physiological activities of the subject. The method also includes performing image reconstruction using temporally constrained compressed sensing reconstruction on at least a portion of the acquired magnetic resonance data, wherein acquiring the magnetic resonance data includes receiving data associated with ASL of the area of interest of the subject.
Abstract:
In some aspects, the disclosed technology relates to reducing respiratory-induced motion artifacts for accelerated imaging. In one embodiment, magnetic resonance data may be acquired for an area of a subject containing the heart. The acquired data may include motion-corrupted data due to respiration of the subject. From the acquired data, an image may be independently reconstructed for each of a plurality of time frames, with each time frame corresponding to one of a plurality of heartbeats. A region containing the heart of the subject may be automatically detected in the reconstructed images, and rigid motion registration may be performed on the region of the reconstructed images containing the heart. Based on the rigid motion registration, a linear phase shift for motion correction may be determined. The linear phase shift may be applied to the motion-corrupted data to produce linear phase-shifted data, and a k-t image reconstruction may be performed on the linear phase-shifted data to produce motion-corrected images.
Abstract:
Some aspects of the present disclosure relate a method for magnetic resonance imaging, which can include acquiring, by applying an imaging pulse sequence, magnetic resonance data associated with a region of interest of a subject. The imaging pulse sequence can include a plurality of RF pulses configured to generate a desired image contrast, and an outer-volume suppression (OVS) module to attenuate the signal outside the region of interest. The method can further include reconstructing, from the acquired magnetic resonance data, a plurality of reduced field of view (rFOV) magnetic resonance images corresponding to the region of interest.
Abstract:
In some aspects, the disclosed technology relates to reducing respiratory-induced motion artifacts for accelerated imaging. In one embodiment, magnetic resonance data may be acquired for an area of a subject containing the heart. The acquired data may include motion-corrupted data due to respiration of the subject. From the acquired data, an image may be independently reconstructed for each of a plurality of time frames, with each time frame corresponding to one of a plurality of heartbeats. A region containing the heart of the subject may be automatically detected in the reconstructed images, and rigid motion registration may be performed on the region of the reconstructed images containing the heart. Based on the rigid motion registration, a linear phase shift for motion correction may be determined. The linear phase shift may be applied to the motion-corrupted data to produce linear phase-shifted data, and a k-t image reconstruction may be performed on the linear phase-shifted data to produce motion-corrected images.
Abstract:
Systems and methods for accelerated arterial spin labeling (ASL) using compressed sensing are disclosed. In one aspect, in accordance with one example embodiment, a method includes acquiring magnetic resonance data associated with an area of interest of a subject, wherein the area of interest corresponds to one or more physiological activities of the subject. The method also includes performing image reconstruction using temporally constrained compressed sensing reconstruction on at least a portion of the acquired magnetic resonance data, wherein acquiring the magnetic resonance data includes receiving data associated with ASL of the area of interest of the subject.
Abstract:
Some aspects of the present disclosure relate a method for magnetic resonance imaging, which can include acquiring, by applying an imaging pulse sequence, magnetic resonance data associated with a region of interest of a subject. The imaging pulse sequence can include a plurality of RF pulses configured to generate a desired image contrast, and an outer-volume suppression (OVS) module to attenuate the signal outside the region of interest. The method can further include reconstructing, from the acquired magnetic resonance data, a plurality of reduced field of view (rFOV) magnetic resonance images corresponding to the region of interest.
Abstract:
Some aspects of the present disclosure relate to systems and methods for three-dimensional spiral perfusion imaging. In one embodiment, a method for perfusion imaging of a subject includes acquiring perfusion imaging data associated with the heart of a subject. The acquiring includes applying an imaging pulse sequence with a three-dimensional stack-of-spirals trajectory. The method also includes reconstructing perfusion images from the acquired perfusion imaging data. The reconstructing includes parallel imaging and motion-guided compressed sensing. The method also includes determining, from the reconstructed perfusion images, absolute perfusion values based on time-intensity relationships to quantify myocardial blood flow of the heart of the subject, and generating a quantitative volumetric perfusion flow map based on the determined absolute perfusion values.
Abstract:
Some aspects of the present disclosure relate to accelerated imaging using variable-density sampling and compressed sensing with parallel imaging. In one embodiment, a method includes acquiring magnetic resonance data associated with a physiological activity in an area of interest of a subject. The acquiring includes performing accelerated variable-density sampling with phase-contrast displacement encoding. The method also includes reconstructing, from the acquired magnetic resonance data, images corresponding to the physiological activity in the area of interest. The reconstructing includes performing parallel imaging and compressed sensing.
Abstract:
Some aspects of the present disclosure relate to accelerated imaging using variable-density sampling and compressed sensing with parallel imaging. In one embodiment, a method includes acquiring magnetic resonance data associated with a physiological activity in an area of interest of a subject. The acquiring includes performing accelerated variable-density sampling with phase-contrast displacement encoding. The method also includes reconstructing, from the acquired magnetic resonance data, images corresponding to the physiological activity in the area of interest. The reconstructing includes performing parallel imaging and compressed sensing.
Abstract:
Some aspects of the present disclosure relate to systems and methods for three-dimensional spiral perfusion imaging. In one embodiment, a method for perfusion imaging of a subject includes acquiring perfusion imaging data associated with the heart of a subject. The acquiring includes applying an imaging pulse sequence with a three-dimensional stack-of-spirals trajectory. The method also includes reconstructing perfusion images from the acquired perfusion imaging data. The reconstructing includes parallel imaging and motion-guided compressed sensing. The method also includes determining, from the reconstructed perfusion images, absolute perfusion values based on time-intensity relationships to quantify myocardial blood flow of the heart of the subject, and generating a quantitative volumetric perfusion flow map based on the determined absolute perfusion values.