Abstract:
A system includes a gas turbine engine having a low speed spool and a high speed spool. The system also includes a spool coupling system configured to mechanically link the low speed spool and the high speed spool. A controller is operable to determine a mode of operation of the gas turbine engine, monitor for a spool coupling activation condition associated with the mode of operation, and activate the spool coupling system based on the controller detecting the spool coupling activation condition. Engagement and power transfer between the low speed spool and the high speed spool occurs based on activation of the spool coupling system and reaching an engagement condition of the spool coupling system.
Abstract:
A gas turbine engine includes an engine core includes at least one compressor, a combustor downstream of the compressor, and at least one turbine downstream of the combustor. A primary flowpath fluidly connects each of the compressor, the combustor, and the turbine. At least one particle extraction duct has an extraction duct inlet connected to the primary flowpath fore of the compressor and an extraction duct outlet connected to a bypass flowpath.
Abstract:
A system for controlling blade tip clearances in a gas turbine engine may comprise an active clearance control system and a controller in operable communication with the active clearance control system. The controller may be configured to identify a cruise condition, reduce a thrust limit of the gas turbine engine to a de-rated maximum climb thrust, determine a first target tip clearance based on the de-rated maximum climb thrust, and send a command signal correlating to the first target tip clearance to the active clearance control system.
Abstract:
A system for starting a gas turbine engine of an aircraft is provided. The system includes a pneumatic starter motor, a discrete starter valve switchable between an on-state and an off-state, and a controller operable to perform a starting sequence for the gas turbine engine. The starting sequence includes alternating on and off commands to an electromechanical device coupled to the discrete starter valve to achieve a partially open position of the discrete starter valve to control a flow from a starter air supply to the pneumatic starter motor to drive rotation of a starting spool of the gas turbine engine below an engine idle speed, where the controller modulates a duty cycle of the discrete starter valve via pulse width modulation.
Abstract:
A bowed rotor start mitigation system for a gas turbine engine is provided. The bowed rotor start mitigation system includes a variable position starter valve and a controller. The controller is operable to dynamically adjust the variable position starter valve to deliver a starter air supply to a starter to drive rotation of a starting spool of the gas turbine engine according to a dry motoring profile that continuously varies a rotor speed of the starting spool up to a point below a critical rotor speed.
Abstract:
A system for controlling a start sequence of a gas turbine engine includes an electronic engine control system, a thermal model, memory, a model for determining a time period (fmotoring), and a controller. The thermal model synthesizes a heat state of the gas turbine engine. The memory records the current heat state at shutdown and a shutdown time of the gas turbine engine. The model for determining the time period is for motoring the gas turbine engine at a predetermined speed Ntarget that is less than a speed to start the gas turbine engine, where tmotoring is a function of the heat state recorded at engine shutdown and an elapsed time of an engine start request relative to a previous shutdown time. The controller modulates a starter valve to maintain the gas turbine engine within a predetermined speed range of NtargetMin to NtargetMax for homogenizing engine temperatures.
Abstract:
A total air temperature (TAT) sensor assembly is disclosed. The assembly includes a housing that accommodates a temperature sensor. The assembly also includes a first airfoil that includes a leading end and a trailing end and a second airfoil that includes a leading end and a trailing end. The first and second airfoils are disposed in a spaced-apart fashion that defines a curved passageway so incoming air can flow between the first and second airfoils before engaging the housing and the temperature sensor. The trailing ends of the airfoils are disposed on opposite sides of the housing and spaced apart from the housing to permit air flowing through the curved passageway to pass the housing.
Abstract:
A gas turbine engine comprises a compressor, a combustor, a turbine, and an electronic engine control system. The compressor, combustor, and turbine are arranged in flow series. The electronic engine control system is configured to generate a real-time estimate of compressor stall margin from an engine model, and command engine actuators to correct for the difference between the real time estimate of compressor stall margin and a required stall margin.
Abstract:
A variable-geometry system for a gas turbine engine can be used to improve operations in various inclement weather conditions. This may be achieved by varying the orientation of an element in a gas turbine engine flowpath in response to a comparison between sensor-gathered parameter data and stored parameter values and ranges using a pre-programmed algorithm. The orientation of the element may be infinitely variable within a range of orientations.
Abstract:
A system for starting a gas turbine engine of an aircraft is provided. The system includes a pneumatic starter motor, a discrete starter valve switchable between an on-state and an off-state, and a controller operable to perform a starting sequence for the gas turbine engine. The starting sequence includes alternating on and off commands to an electromechanical device coupled to the discrete starter valve to achieve a partially open position of the discrete starter valve to control a flow from a starter air supply to the pneumatic starter motor to drive rotation of a starting spool of the gas turbine engine below an engine idle speed, where the controller modulates a duty cycle of the discrete starter valve via pulse width modulation.