Abstract:
Disclosed is an implantable, coin-sized, self-contained, leadless electroacupuncture (EA) device having at least two electrode contacts attached to the surface of its housing. The electrodes include a central cathode electrode on a bottom side of the housing, and a circumferential anode electrode that surrounds the cathode electrode. In one embodiment, the anode annular electrode is a ring electrode placed around the perimeter edge of the coin-shaped housing. The EA device is adapted to be implanted through a very small incision, e.g., less than about 2-3 cm in length, directly adjacent to a selected acupuncture site known to moderate or affect a hypertension condition of a patient. Appropriate power management circuitry within the device allows a primary battery having a relatively high internal impedance to be used without causing unacceptable dips in battery voltage when the instantaneous battery current surges. Stimulation pulses are generated during a stimulation session that has a duration of T3 minutes and which is applied every T4 minutes. The duty cycle, or ratio of T3 to T4, is very low, not greater than 0.05. This low duty cycle, along with careful power management, allows the EA device to perform its intended function for several years.
Abstract:
An implantable electroacupuncture device (IEAD) treats a medical condition of a patient through application of electroacupuncture (EA) stimulation pulses applied at a target tissue location, such as an acupoint. The IEAD comprises an implantable, coin-sized, self-contained, leadless electroacupuncture device having at least two electrodes attached to an outside surface of its housing. The device generates EA stimulation pulses in accordance with a specified stimulation regimen. Power management circuitry within the device allows a primary battery, having a high internal impedance, to be used to power the device. The stimulation regimen generates stimulation pulses during a stimulation session of duration T3 minutes applied every T4 minutes. The duty cycle, or ratio T3/T4, is very low, no greater than 0.05. The low duty cycle and careful power management allow the IEAD to perform its intended function for several years.
Abstract:
An exemplary method treating an erectile dysfunction condition in a patient includes 1) generating, by an electroacupuncture device implanted beneath a skin surface of the patient, stimulation sessions at a duty cycle that is less than 0.05, and 2) applying, by the electroacupuncture device in accordance with the duty cycle, the stimulation sessions to a target tissue location within the patient by way of an electrode array located within the patient at an acupoint corresponding to the target tissue location.
Abstract:
An exemplary method includes generating, by an electroacupuncture device implanted beneath a skin surface of a patient, stimulation sessions at a duty cycle that is less than 0.05, and applying, by the electroacupuncture device in accordance with the duty cycle, the stimulation sessions to a location within the patient. A primary battery located within the electroacupuncture device and having an internal impedance greater than 5 ohms is configured to provide operating power to pulse generation circuitry within the electroacupuncture device.
Abstract:
An electroacupuncture device for treating hypertension in a patient includes 1) a housing configured to be implanted beneath a skin surface of the patient at an acupoint corresponding to a target tissue location within the patient, the acupoint comprising at least one of PC5, PC6, ST36, and ST37, 2) a central electrode of a first polarity and centrally located and substantially planar on a first surface of the housing, 3) an annular electrode of a second polarity and that surrounds the central electrode on the first surface of the housing, the annular electrode being spaced apart from the central electrode, and 4) pulse generation circuitry located within the housing and electrically coupled to the annular and central electrodes.
Abstract:
An exemplary method of treating a chronic low back pain condition in a patient includes 1) generating, by an electroacupuncture device implanted beneath a skin surface of the patient at at least one of acupoints BL22, BL23, BL24, BL25, and BL26 within the patient, stimulation sessions at a duty cycle that is less than 0.05, wherein the duty cycle is a ratio of T3 to T4 and each stimulation session included in the stimulation sessions has a duration of T3 minutes and occurs at a rate of once every T4 minutes, and 2) applying, by the electroacupuncture device, the stimulation sessions to the target tissue location in accordance with the duty cycle.
Abstract:
An exemplary method treating a cardiovascular disease in a patient includes 1) generating, by an electroacupuncture device implanted beneath a skin surface of the patient, stimulation sessions at a duty cycle that is less than 0.05, and 2) applying, by the electroacupuncture device in accordance with the duty cycle, the stimulation sessions to a median nerve of the patient by way of an electrode array located within the patient at an acupoint corresponding to the median nerve.
Abstract:
An exemplary method of treating obesity or dyslipidemia of a patient includes 1) generating, by an electroacupuncture device implanted beneath a skin surface of the patient at an acupoint corresponding to at least one of a saphenous nerve and a peroneal nerve of the patient, stimulation sessions at a duty cycle that is less than 0.05, and 2) applying, by the electroacupuncture device in accordance with the duty cycle, the stimulation sessions to at least one of the saphenous nerve and the peroneal nerve by way of a central electrode and an annular electrode located on a housing of the electroacupuncture device.
Abstract:
An implantable electroacupuncture device (IEAD) treats obese conditions of a patient through application of stimulation pulses applied at acupoints SP4, LR8 or ST40, or their underlying nerves saphenous and peroneal. The IEAD comprises an implantable, coin-sized, self-contained, leadless electroacupuncture device having at least two electrodes attached to an outside surface of its housing. The device generates stimulation pulses in accordance with a specified stimulation regimen. Power management circuitry within the device allows a primary battery, having a high internal impedance, to be used to power the device. The stimulation regimen generates stimulation pulses during a stimulation session of duration T3 minutes applied every T4 minutes. The duty cycle, or ratio T3/T4, is very low, no greater than 0.05. The low duty cycle and careful power management allow the IEAD to perform its intended function for several years.
Abstract:
An implantable electroacupuncture device (IEAD) treats a specified medical condition of a patient through application of electroacupuncture (EA) stimulation pulses applied substantially at or near a specified acupoint, its underlying nerves, or other target tissue location. The IEAD includes an IEAD housing having an electrode configuration thereon that includes at least two electrodes, and pulse generation circuitry located within the IEAD housing and electrically coupled to the at least two electrodes. The pulse generation circuitry is adapted to deliver stimulation pulses to the patient's body tissue at or near the target tissue location in accordance with a specified stimulation regimen, the stimulation regimen requiring that the stimulation session have a duration of T3 minutes and a rate of occurrence of once every T4 minutes, and wherein a ratio of T3/T4 is no greater than 0.05.