Abstract:
Techniques described herein may allow for the selective enabling and/or disabling of shared access points (“SAPs”). The selective enabling and/or disabling may occur based on the analysis of key performance indicators (“KPIs”) associated with the SAPs. The selective enabling and/or disabling may cause the SAPs to cease (or continue) broadcasting their availability for User Equipment (“UEs”) of a particular wireless provider, decline (or accept) bearer requests for UEs of the particular wireless provider, or terminate existing connections with UEs of the particular wireless provider. The selective enabling and/or disabling may be performed for certain applications or Quality of Service (“QoS”) levels. The selective enabling and/or disabling may be performed proactively (e.g., without necessarily determining that the performance for a given SAP has not met a threshold performance), based on historical trends.
Abstract:
A service quality metric, that measures the quality of a multicast broadcast that is being received by a mobile device, may be determined. In one implementation, a method may include receiving a radio signal corresponding to a multicast broadcast of content that was encoded using a forward error correction (FEC) technique in which the content is segmented and encoded as a plurality of blocks; and reassembling the content corresponding to the received radio signal. The method may further include determining an FEC failure rate based on a relative occurrence of the successfully reassembled blocks to the unsuccessfully reassembled blocks; determining a service quality metric based on the FEC failure rate; and providing a visual indication of the service quality metric.
Abstract:
A device receives, from a content provider, traffic parameters associated with a video content request received from a fixed user device connected to a wireless access network, and determines, based on the traffic parameters, a trigger for creating a dedicated bearer for the fixed user device in the wireless access network. The device also provides the trigger to the wireless access network, where the wireless access network creates the dedicated bearer for the fixed user device based on the trigger, and the wireless access network assigns quality of service (QoS) parameters, based on the traffic parameters, to video content delivered to the fixed user device.
Abstract:
A base station may obtain channel usage information identifying usage of one or more unlicensed radio frequency (RF) spectrum bands. The base station may select a selected band, of the one or more unlicensed RF spectrum bands, based on the channel usage information. The base station may select one or more RF channels, of multiple RF channels included in the selected band, based on a congestion value of the selected band. The congestion value may be determined based on values of the channel usage information corresponding to the selected band. The selected RF channel may include an impaired RF channel that may not permit full bandwidth utilization due to constraints. The base station may communicate with user equipment via the one or more RF channels of the selected band.
Abstract:
A small cell device may communicate with a user device (e.g., a smartphone, a tablet computer, etc.) via a range extender device that extends the effective range of the small cell device to the user device. The small cell device, the range extender device, and the user device may communicate with one another using channels of a licensed spectrum (e.g., traditional LTE channels). The range extender device may determine channel conditions corresponding to an unlicensed spectrum (e.g., 5 Gigahertz (GHz) Spectrum) and communicate the channel conditions to the small cell device. Based on the channel conditions, the small cell device and the range extender device may select downlink-only channels of the unlicensed spectrum and cause the downlink capabilities of the channels of the unlicensed spectrum to be augmented by the downlink capabilities of the downlink-only channels of the unlicensed spectrum.
Abstract:
A device receives an address from a computer terminal; determines a location associated with the address; and determines a current signal quality at the location by referencing a file that represents an area that includes the location. The device further determines whether the location qualifies for a fixed wireless service based on the current signal quality. The device also transmits information to the computer terminal. The information indicates whether the location qualifies for the fixed wireless service.
Abstract:
A device may receive bearer information associated with radio bearers to be multiplexed to form a master bearer. The device may determine respective bandwidth amounts, for each radio bearer, to be allocated to the master bearer. The device may determine a total bandwidth to be allocated to the master bearer based on the bandwidth amounts. The device may form the master bearer, having the total bandwidth, based on multiplexing the radio bearers. The device may provide respective content streams, associated with the radio bearers, via the master bearer.
Abstract:
A device is configured to establish a session with a mobile device. The session may allow the mobile device to communicate with or via an operator network via the device. The device may determine a speed at which the mobile device is traveling. The device may determine a cell type for a neighbor base station. The cell type may indicate a type of cell that the neighbor base station services. The device may selectively hand over the session to the neighbor base station based on the speed at which the mobile device is traveling and the cell type for the neighbor base station.
Abstract:
A server device may store information identifying that one or more first user devices, currently connected to a network device via a particular band, should continue to communicate via the particular band when a connection threshold, associated with the particular band, has been exceeded. The particular band may be associated with a multicast service that provides multicast content to the one or more first user devices via the particular band. The server device may determine that the connection threshold has been exceeded; identify a second user device, currently connected to the network device via the particular band, that should no longer communicate via the particular band when the connection threshold has been exceeded disconnected; and prevent the second user device from communicating via the particular band based on determining that the connection threshold has been exceeded and identifying the second user device.
Abstract:
A server device may store information identifying that one or more first user devices, currently connected to a network device via a particular band, should continue to communicate via the particular band when a connection threshold, associated with the particular band, has been exceeded. The particular band may be associated with a multicast service that provides multicast content to the one or more first user devices via the particular band. The server device may determine that the connection threshold has been exceeded; identify a second user device, currently connected to the network device via the particular band, that should no longer communicate via the particular band when the connection threshold has been exceeded disconnected; and prevent the second user device from communicating via the particular band based on determining that the connection threshold has been exceeded and identifying the second user device.