Abstract:
A refrigeration system including a suction line heat exchanger having a first conduit including a refrigerant liquid which flows inside of the first conduit from the condenser to the evaporator. Also the refrigeration system includes a second conduit in thermal communication with the first conduit and includes a refrigerant fluid, typically a vapor, which flows inside of the second conduit in an opposite direction of flow from the first conduit from the evaporator to the compressor. Additionally, at least one heating device is in thermal communication with at least one of the first conduit and second conduit and is configured to communicate with a refrigeration control system to apply heat along a portion of both the first conduit and the second conduit adjacent to the heating device thereby regulating the flow rate of the refrigerant liquid in the first conduit and the second conduit.
Abstract:
A high-efficiency air conditioning system for conditioning a plurality of rooms within an interior of a building, the air conditioning system including: two separate rooms within a building, a single outdoor unit a refrigerant flow pathway that includes a plurality of refrigerant conduits having a common refrigerant flow path portion and at least two divergent flow path portions, a first divergent flow path where the first evaporator and second evaporator are in parallel with one another; at least one throttling device and at least a first indoor air handling unit positioned within and providing cooling to the first room and a second indoor air handling unit positioned within and providing cooling to a second room. The compressor is incapable of simultaneously supplying both the first evaporator and the second evaporator at their full cooling capacity.
Abstract:
A split air conditioning system for conditioning a plurality of zones within a single living area of a building, that includes a single outdoor unit; a refrigerant flow pathway made up of a plurality of refrigerant conduits having a common refrigerant flow path portion and at least two divergent flow path portions, a first divergent flow path and a second divergent flow path and the first evaporator and second evaporator are in parallel with one another; at least one throttling device; a portioning device configured to selectively and proportionately regulate the flow of a refrigerant fluid to the first evaporator and the second evaporator, respectively where the compressor is configured to be capable of simultaneously driving both the first evaporator and the second evaporator at their full cooling capacity.
Abstract:
A refrigerator includes a cabinet defining a refrigerator compartment and a freezer compartment. A refrigerator door is operably coupled with the cabinet proximate the refrigerator compartment. A freezer door is operably coupled with the cabinet proximate the refrigerator compartment. A first cooling system is disposed in the refrigerator door. The first cooling system maintains a temperature of the refrigerator compartment at a first temperature. A second cooling system is disposed in the freezer door. The second cooling system maintains the freezer compartment at a second temperature that is different than the first temperature.
Abstract:
An appliance that includes a cabinet having an exterior surface; a refrigeration compartment located within the cabinet; and a hydrophilic structure disposed on the exterior surface. The hydrophilic structure is configured to spread condensation. The appliance further includes a wicking structure located in proximity to the hydrophilic structure, and the wicking structure is configured to receive the condensation.
Abstract:
A refrigerator includes a cabinet defining a refrigerator compartment and a freezer compartment. A door is pivotally coupled with the cabinet. A cooling system is disposed solely in the door and is in fluid communication with the refrigerator compartment and the freezer compartment. The cooling system maintains a temperature of the refrigerator compartment at a different temperature than the freezer compartment.
Abstract:
A refrigerator includes a secondary cooling path for circulating liquid coolant through the refrigerator wherein the liquid coolant is cooled by the freezer compartment and wherein the liquid coolant cools the ice maker and the ice bin as the liquid coolant circulates through the secondary cooling path. A pump is positioned along the secondary cooling path for pumping the liquid coolant through the secondary cooling path. A tube having a first end proximate the pump and an opposite end exposed to atmosphere may control suction pressure associated with the pump. The refrigerator reduces frost build up through configuration of the secondary cooling path or performing ice harvesting operations which melt frost. The secondary cooling path may be used to provide for circulating hot liquid. The secondary cooling path may be used to provide for circulating liquid coolant during a power outage.
Abstract:
A connection system for connecting an encoded domestic appliance feature module to a utility source and transferring a plurality of utilities between the encoded feature module and the utility source. The connection system includes a utility source that has a coupler capable of removably engaging an encoded domestic appliance feature module to the utility source. Also included is at least one encoded domestic appliance feature module that independently supplies one or more functionalities. Further included is an interface between the utility source and the feature module, where the interface includes a detection and recognition device that operates to detect when the encoded feature module is connected to the utility source, where one or more predetermined utilities are transferred between the utility source and the feature module based upon which feature module is connected to the utility source, and where the detection and recognition device may be a reed switch, a DIP switch, and a comparator circuit
Abstract:
Methods of operation for refrigerator appliance configurations with a controller, a condenser, at least one evaporator, a compressor, and two refrigeration compartments. The configuration may be equipped with a variable-speed or variable-capacity compressor, variable speed evaporator or compartment fans, a damper, and/or a dual-temperature evaporator with a valve system to control flow of refrigerant through one or more pressure reduction devices. The methods may include synchronizing alternating cycles of cooling each compartment to a temperature approximately equal to the compartment set point temperature by operation of the compressor, fans, damper and/or valve system. The methods may also include controlling the cooling rate in one or both compartments. Refrigeration compartment cooling may begin at an interval before or after when the freezer compartment reaches its lower threshold temperature. Freezer compartment cooling may begin at an interval before or after when the freezer compartment reaches its upper threshold temperature.
Abstract:
A method for creating a vacuum insulated panel including preforming a continuous insulation member having male and female engaging surfaces and providing a barrier film envelope having an opening. The insulation member is disposed within the barrier film envelope and a tooling fixture is pressed against the barrier film envelope to press the barrier film envelope against the male and female engaging surfaces to remove gas from between the barrier film envelope and the male and female engaging surfaces. Substantially all gas is removed from within the barrier film envelope so that the barrier film envelope substantially conforms to an exterior surface of the insulation member. The opening of the barrier film envelope is then hermetically sealed, wherein the barrier film envelope forms a continuous layer over the core insulation member to form a vacuum insulated panel.