Abstract:
A control system suitable for use with a bathing unit system having a water receptacle is provided. The control system comprises first and second heating modules and a controller configured for activating a specific one of the first and second heating module at least in part based on whether the bathing unit is in use.
Abstract:
Method, modules and a system formed by connecting the modules for controlling payloads are disclosed. An activation signal is propagated in the system from a module to the modules connected to it. Upon receiving an activation signal, the module (after a pre-set or random delay) activates a payload associated with it, and transmits the activation signal (after another pre-set or random delay) to one or more modules connected to it. The system is initiated by a master module including a user activated switch producing the activation signal. The activation signal can be propagated in the system in one direction from the master to the last module, or carried bi-directionally allowing two way propagation, using a module which revert the direction of the activation signal propagation direction. A module may be individually powered by an internal power source such as a battery, or connected to external power source such as AC power. The system may use remote powering wherein few or all of the modules are powered from the same power source connected to the system in a single point. The power may be carried over dedicated wires or concurrently with the conductors carrying the activation signal. The payload may be a visual or an audible signaling device, and can be integrated within a module or external to it. The payload may be powered by a module or using a dedicated power source, and can involve randomness associated with its activation such as the delay, payload control or payload activation.
Abstract:
Method, modules and a system formed by connecting the modules for controlling payloads are disclosed. An activation signal is propagated in the system from a module to the modules connected to it. Upon receiving an activation signal, the module (after a pre-set or random delay) activates a payload associated with it, and transmits the activation signal (after another pre-set or random delay) to one or more modules connected to it. The system is initiated by a master module including a user activated switch producing the activation signal. The activation signal can be propagated in the system in one direction from the master to the last module, or carried bi-directionally allowing two way propagation, using a module which revert the direction of the activation signal propagation direction. A module may be individually powered by an internal power source such as a battery, or connected to external power source such as AC power. The system may use remote powering wherein few or all of the modules are powered from the same power source connected to the system in a single point. The power may be carried over dedicated wires or concurrently with the conductors carrying the activation signal. The payload may be a visual or an audible signaling device, and can be integrated within a module or external to it. The payload may be powered by a module or using a dedicated power source, and can involve randomness associated with its activation such as the delay, payload control or payload activation.
Abstract:
Method, modules and a system formed by connecting the modules for controlling payloads are disclosed. An activation signal is propagated in the system from a module to the modules connected to it. Upon receiving an activation signal, the module (after a pre-set or random delay) activates a payload associated with it, and transmits the activation signal (after another pre-set or random delay) to one or more modules connected to it. The system is initiated by a master module including a user activated switch producing the activation signal. The activation signal can be propagated in the system in one direction from the master to the last module, or carried bi-directionally allowing two way propagation, using a module which revert the direction of the activation signal propagation direction. A module may be individually powered by an internal power source such as a battery, or connected to external power source such as AC power. The system may use remote powering wherein few or all of the modules are powered from the same power source connected to the system in a single point. The power may be carried over dedicated wires or concurrently with the conductors carrying the activation signal. The payload may be a visual or an audible signaling device, and can be integrated within a module or external to it. The payload may be powered by a module or using a dedicated power source, and can involve randomness associated with its activation such as the delay, payload control or payload activation.
Abstract:
Method, modules and a system formed by connecting the modules for controlling payloads. An activation signal is propagated in the system from one module to the modules connected to it. Upon receiving an activation signal, the module (after a pre-set or random delay) activates a payload associated with it, and transmits the activation signal (after another pre-set or random delay) to one or more modules connected to it. The system is initiated by a master module including a user activated switch producing the activation signal. The activation signal can be propagated in the system in one direction from the master to the last module, or carried bi-directionally allowing two way propagation, using a module which revert the direction of the activation signal propagation direction. A module may be individually powered by an internal power source such as a battery, or connected to an external power source such as AC power.
Abstract:
A subsea electrical subsystem and a power distribution utilizing the same. The electrical substation located subsea is electrically connected to AC power provided by a power generator located topside. The electrical substation comprises a plurality of circuit breakers and a circuit breaker operating system associated with each circuit breaker. The circuit breaker operating system is constructed and arranged to operate the associated circuit breaker and is operatively connected to at least one control module. The control modules are electrically connected to a DC power supply located topside.
Abstract:
Method, modules and a system formed by connecting the modules for controlling payloads. An activation signal is propagated in the system from one module to the modules connected to it. Upon receiving an activation signal, the module (after a pre-set or random delay) activates a payload associated with it, and transmits the activation signal (after another pre-set or random delay) to one or more modules connected to it. The system is initiated by a master module including a user activated switch producing the activation signal. The activation signal can be propagated in the system in one direction from the master to the last module, or carried bi-directionally allowing two way propagation, using a module which revert the direction of the activation signal propagation direction. A module may be individually powered by an internal power source such as a battery, or connected to an external power source such as AC power.
Abstract:
A turbine farm comprises a plurality of individual turbines each having an auxiliary component circuit. The farm further comprises; a master transformer arranged to be coupled between each of the plurality of individual turbines and an electrical grid and an auxiliary transformer coupled between the sub-station transformer and the auxiliary component circuit in each of the individual turbines. When in use power is transmitted from the sub-station transformer back to each auxiliary component circuit.
Abstract:
An electric receptacle module is disclosed. The receptacle module includes a remote control device and a power outlet device. The remote control device has a signal transmission unit and an adjusting key. The signal transmission unit launches a timing signal when the adjusting key is pressed, and the adjusting key comprises a plus key and a minus key. The power outlet device has a signal receiving unit, a counting unit, a full-time power output interface and a timed power output interface. The power outlet device is configured to receive a power, the counting unit starts to count a predetermined time when the signal receiving unit receives the timing signal, the full-time power output interface supplies the power at all times, the timed power output interface supplies the power during the predetermined time.
Abstract:
A system includes a plurality of outlet systems receivable in respective electrical boxes in a building and connected via electrical wires to an electric power supply. The plurality of outlet systems include at least one electrical receptacle connectable to an electrical appliance, a computing unit operable to monitor the electrical appliance, a switch for interrupting electrical power to the electrical appliance in response to the computing unit. The at least one electrical receptacle, the computing unit, and the switch are configured to be receivable within and connectable to the electrical box and covered by a cover plate having at least one opening for accessing the at least one electrical receptacle. A network device is operable for communicating with the plurality of outlet systems and for communicating with a global communications network.