Abstract:
An appliance door includes a vacuum insulated structure having a plurality of core sections that are folded to form an ice and/or water dispensing cavity on an outer side of the appliance door. The vacuum insulated door structure may be positioned between an outer door member and a door liner.
Abstract:
A method and system is provided which receives a desired humidity level from a user for the refrigeration compartment of a refrigerator, determines the current humidity level, and then activates an atomizer in the refrigeration compartment to increase the humidity level if needed. The humidity in the refrigeration compartment may be determined based at least in part on the temperature of the refrigeration compartment, the defrost timer, the door opening times, and the compressor timer.
Abstract:
A method of forming a refrigeration heat exchanger comprising a suction line and a capillary line includes juxtaposing at least a portion of the suction and capillary lines to form a juxtaposed portion, at least partially enveloping the juxtaposed portion with a metal material, and encapsulating the capillary line to the suction line along at least a portion of the juxtaposed portion.
Abstract:
An appliance system that includes an appliance and a turbo-chilling chamber is provided. In one embodiment, the turbo-chilling chamber for chilling a beverage within a beverage container or a foodstuff is operably engaged to an interior surface of the appliance and typically includes a rigid outer wall; a flexible inner wall defining a coolant chamber; and at least one coolant spaced between the rigid outer wall and flexible inner wall in the coolant chamber. The flexible inner wall defines a receiving space, accommodates various sized beverage containers or foodstuffs, and moves between a first position and a second position. The coolant within the coolant chamber is typically at higher than atmospheric pressure when the flexible inner wall is in the second position and a lesser pressure when the flexible inner wall is in the first position. The method of turbo-chilling a beverage container/beverage/foodstuff within the turbo-chilling chamber is also provided.
Abstract:
A multi-layer vacuum insulating panel that includes: a first barrier film having at least one polymeric material layer and; a second barrier film having at least one interior polymeric layer, a metal foil layer, and at least one exterior polymeric layer positioned on the opposite side of the metal foil layer as the at least one interior polymeric layer; a sealing junction between the first barrier film and the second barrier film at a sealing section about a perimeter of the first barrier film and the second barrier film where the first barrier film and the second barrier film physically and sealingly engage one another; and a multi-section central core having a first fumed silica region that contains at least one fumed silica compound and at least one fibrous (fiberglass) region that are each discrete regions within the interior volume.
Abstract:
A high-efficiency air conditioning system for conditioning a plurality of zones within an interior of a building that includes: at least two independent ductwork systems within a building wherein each independent ductwork system directs heating and cooling to one zone within the building; a single outdoor unit a refrigerant flow pathway having a common refrigerant flow path portion, a first divergent flow path, and a second divergent flow path; at least one throttling device and at least a first indoor air handling unit providing cooling to a first independent ductwork system and a second indoor air handling unit providing cooling to a second indoor ductwork system. The compressor is incapable of simultaneously supplying both the first evaporator and the second evaporator at their full cooling capacity.
Abstract:
A refrigerator includes a cabinet defining a refrigerator compartment and a freezer compartment. A door is coupled with the cabinet. A cooling system is disposed in the door and is in fluid communication with the refrigerator compartment and the freezer compartment. A dividing wall is removably coupled with the cabinet and extends between the refrigerator compartment and the freezer compartment. The dividing wall is relocatable within the cabinet to change a relative volume of the refrigerator compartment and the freezer compartment.
Abstract:
An appliance includes a cabinet; a first compartment; and a second compartment. The first compartment and the second compartment are separated by a horizontal mullion. The cabinet also typically includes a coolant system that has: a single compressor for regulating a temperature of the first compartment and a temperature of the second compartment operably connected to at least one evaporator; a shared coolant fluid connection system; and a coolant fluid spaced within the shared coolant fluid connection system used to regulate both the temperature of the first compartment and the second compartment. The compressor can provide the shared coolant at least two different pressures to at least one evaporator using the shared coolant fluid connection circuit. The ratio of the substantially steady state heat gain for the first compartment to the substantially steady state total heat gain for the overall cabinet is about 0.65:1 or greater.
Abstract:
A refrigerator includes a cabinet having a top wall. At least one door is coupled with the cabinet and is moveable between an open position and a closed position. A removable cooling module is disposed on the top wall of the refrigerator. The removable cooling module includes a cooling unit and an ice maker. An ice dispenser is coupled with the refrigerator. A duct is in communication with the removable cooling module and is adapted to convey ice and cool air from the removable cooling module to the refrigerator.
Abstract:
An ice making apparatus for an appliance includes a housing that has an interior volume and an ice tray horizontally suspended across the interior volume that is configured to retain water. The ice making apparatus also includes a heat pump thermally coupled to a bottom surface of the ice tray. The heat pump is configured to freeze water in the ice tray and expel heat. A heat transfer device is configured to move heat expelled by the heat pump to an upper portion of the interior volume.