摘要:
The invention relates to a method and to a device for homogenizing a glass melt in a melt receptacle, wherein at least one stirring device (10, 11) is disposed in the melt receptacle, which comprises a stirrer shaft (10) and a plurality of stirrer blades (11), and wherein a gap (16) is formed between a wall region of the melt receptacle (2) and the stirrer blades (11).According to the invention, the respective stirring device causes an axial feed action in an inner stirring region (12) between the stirrer shaft (10) and the stirrer blades (11) in order to feed the melt in the stirring region along the stirrer shaft (10). A melt flow brought about by the axial feed action seals the gap (16) against direct passage of the melt.According to the invention, a very high gap width can be achieved, thus preventing the abrasion of materials in the region of the marginal gap. This also reduces the complexity required for adjusting the device. According to the invention, a high level of homogenization can be achieved regardless of the entry point of the inhomogeneities.
摘要:
The apparatus (300) for feeding, homogenizing, and conditioning a high viscosity glass melt for manufacturing display glass has a stirring device (110, 406), an upstream connecting part (100, 400) that connects the stirring device (110, 406) to an upstream melting and/or refining unit, and a downstream connecting part (120, 420) that connects the stirring device (110, 406) to a downstream forming or shaping device. Wall material and base material of the first and connecting parts and the stirring device (110, 406) coming in contact with the glass melt are made from a zirconium-dioxide-containing fire-resistant material containing a large amount, preferably more than 85 wt. %, of zirconium dioxide. A method of operating the apparatus to make display glass is also described.
摘要:
The device for homogenizing a glass melt has at least one stirring device, which includes a rotatable stirrer shaft (10) and stirrer paddles (11, 11′, 11″). The stirrer paddles are arranged at intervals from each other along the stirrer shaft to produce an essentially axially oriented conveying effect on the glass melt. To improve homogenization while simultaneously saving on noble metal material, the stirrer paddles (11, 11′, 11″) are each provided with a built-in element (11E). The built-in element (11E) has an edge (11K), which extends from the stirrer shaft (10) in a radial direction (R) along a rear paddle area (11B) with an edge length which is less by a specified distance (X) than the length (L) of the paddle area (11B) in a radial direction (R). These built-in elements provide a marked reduction in bubble formation.
摘要:
The invention relates to a method and to a device for homogenizing a glass melt in a melt receptacle, wherein at least one stirring device (10, 11) is disposed in the melt receptacle, which comprises a stirrer shaft (10) and a plurality of stirrer blades (11), and wherein a gap (16) is formed between a wall region of the melt receptacle (2) and the stirrer blades (11).According to the invention, the respective stirring device causes an axial feed action in an inner stirring region (12) between the stirrer shaft (10) and the stirrer blades (11) in order to feed the melt in the stirring region along the stirrer shaft (10). A melt flow brought about by the axial feed action seals the gap (16) against direct passage of the melt.According to the invention, a very high gap width can be achieved, thus preventing the abrasion of materials in the region of the marginal gap. This also reduces the complexity required for adjusting the device. According to the invention, a high level of homogenization can be achieved regardless of the entry point of the inhomogeneities.
摘要:
The invention describes a lead-free and arsenic-free special short flint glass with a refractive index 1.60≦nd≦1.65, an Abbe number of 41≦νd≦52, a relative partial dispersion 0.551≦PgF≦0.570 in the blue spectral region, a relative partial dispersion 0.507≦PCs≦0.525 in the red spectral region, a negative deviation of the relative partial dispersion from the normal line ΔPg,F≦−0.0045 and an improved chemical resistance which has the following composition (in % by weight): SiO2>50–65 Al2O30–7 B2O30–6 Li2O0–6 Na2O 3–11 K2O0–6 MgO 0–12 CaO 1–12 BaO0–8 La2O3 0–15 Ta2O5 0–10 Nb2O5 4–20 ZrO2>10–20 Σ(CaO + MgO + BaO) 1–25 Σ(Na2O + K2O + Li2O) 3–20 SiO2/(ZrO2 + La2O3 + Nb2O5 + Ta2O5)1.5–2.3.
摘要:
In a process for the production of flat, particularly float glass that can be converted into glass ceramic, a liquid film consisting in particular of the float bath metal is formed between the wetback tile, and optionally the restrictor tiles, and the glass stream. The tiles preferably consist of a porous material through the pores of which is pressed the liquid for creating the film.
摘要:
A lithium-ion battery cell is provided that includes at least one inorganic, multi-functional constituent that has a low thermal conductivity and is suitable for reducing or restricting thermal anomalies at least locally.
摘要:
A lithium-ion battery cell is provided that includes at least one inorganic, multi-functional constituent that has a low thermal conductivity and is suitable for reducing or restricting thermal anomalies at least locally.
摘要:
A glass-based material is disclosed, which is suitable for the production of a separator for an electrochemical energy accumulator, in particular for a lithium ion accumulator, wherein the glass-based material comprises at least the following constituents (in wt.-% based on oxide): SiO2+F+P2O5 20-95; Al2O3 0.5-30, wherein the density is less than 3.7 g/cm3.
摘要翻译:公开了一种玻璃基材料,其适用于生产用于电化学能量储能器,特别是用于锂离子蓄电池的隔板,其中玻璃基材料至少包含以下成分(以重量计为基数) 氧化物):SiO 2 + F + P 2 O 5 20-95; Al2O3 0.5-30,其中密度小于3.7g / cm 3。
摘要:
The invention relates to an optical hybrid lens. According to the invention, the lens consists of a substrate (1) that consists of a ceramic having a predetermined shape and at least another material (2), which covers a surface of the substrate (1) at least in certain sections in order to form a lens surface.Use of an optical ceramic as a material enables an additional degree of freedom for adjusting the imaging properties of the hybrid lens. The optical ceramic may have a high refractive index and a low dispersion. The other material can be a material that can be deformed or recast at temperatures that are low in comparison to those of the optical ceramic. In particular the other material can be a low-TG glass or a polymer. The other material is directly applied onto the substrate without a further surface finishing being necessarily required.Other aspects of the invention relate to an optical lens group, an optical image acquisition device, and a process for manufacturing a hybrid lens.