Abstract:
A method for precipitating overspray from the overspray-laden booth exhaust air of coating installations, in particular from painting installations, the overspray is carried by an air stream to a precipitation device, where a majority at least of the solid material is precipitated from the overspray. The overspray-laden booth exhaust air is guided through filter modules, in which overspray is precipitated and which are designed as replaceable one-way components having a filter housing and a filter unit, wherein each filter module is replaced by an empty filter module after reaching a loading overspray. Moreover, the invention relates to a device for precipitating overspray by means of such one-way filter modules, and to an installation for coating objects, in particular vehicle bodies.
Abstract:
A method for precipitating overspray from the overspray-laden booth exhaust air of coating installations, in particular from painting installations, the overspray is carried by an air stream to a precipitation device, where a majority at least of the solid material is precipitated from the overspray. The overspray-laden booth exhaust air is guided through filter modules, in which overspray is precipitated and which are designed as replaceable one-way components having a filter housing and a filter unit, wherein each filter module is replaced by an empty filter module after reaching a loading overspray. Moreover, the invention relates to a device for precipitating overspray by means of such one-way filter modules, and to an installation for coating objects, in particular vehicle bodies.
Abstract:
A system for coating objects, comprising a coating booth and an electrostatically operating separation unit. A feeding device, by which deposition liquid can be fed to the upper region of each deposition surface, is assigned to each deposition electrode of the deposition unit. The feeding device has a feed channel which can be filled with deposition liquid and which in the lower region thereof is formed by two spring plates. Two slide plates are also seated against the opposite deposition surfaces of the deposition electrode and can be moved back and forth between a position in which the lower edges of said slide plates are located above the lower edges of the spring plates and a position in which the lower edges of said slide plates are located below the lower edges of the spring plates.
Abstract:
A system for coating objects, comprising a coating booth and an electrostatically operating deposition unit. A feeding device, by which deposition liquid can be fed to the upper region of each deposition surface, is assigned to each deposition electrode of the deposition unit. The feeding device has a feed channel which can be filled with deposition liquid and which in the lower region thereof is formed by two spring plates. Two slide plates are also seated against the opposite deposition surfaces of the deposition electrode and can be moved back and forth between a position in which the lower edges of said slide plates are located above the lower edges of the spring plates and a position in which the lower edges of said slide plates are located below the lower edges of the spring plates.
Abstract:
An apparatus for treating workpieces comprises a treatment chamber enclosing a treatment zone for workpieces. A conveyor guides workpieces through the chamber. Said conveyor comprises drive elements located outside the chamber, and a carrier arm, extending through a slot along the conveyor's path of motion, in a wall of the chamber. A sealing arrangement comprises a first set of spring strips, which overlap laterally and are attached on one side of the slot to the wall, and an opposing second set of spring strips attached on the other side of the slot to the wall. In a resting position, the end zones of the spring strips overlap. Two deflecting devices, which move together with the carrier arm by the conveyor, open the sealing arrangement proximate the carrier arm by resiliently bending apart the spring strips. After passage of the carrier arm, the spring strips return to a sealing position.
Abstract:
The invention relates to a method for operating a system for producing bioethanol, wherein organic waste products of the production process, particularly DGS and DDGS, are combusted and the useful heat is fed back into the system itself. The combustion process takes place in a fluidized bed oven. All areas in which the combustion process takes place have sufficient heat removed that the melting point of the ash of the waste product, particularly 70° C., is not exceeded at any point. In this manner, a fine-grained ash forms and largely mixes into the fluidized bed and is easily disposed of. The useful heat is obtained partially from the flue gas arising from the combustion, and partially from the heat extracted from the combustion process for maintaining the maximum temperature.