Abstract:
Provided is a case of pouch type cells, which is capable of stably protecting pouch type cells constituting a secondary battery used as a high power supply, and having excellent heat dissipation performance.
Abstract:
Provided is a method for transmitting/receiving data in a CAN protocol. First, it is determined whether the size of CAN message data to be transmitted exceeds the size of the data field. If the size of the CAN message data exceeds the size of the data field, the CAN message data are fragmented to generate data fragments smaller in size than the data field, A CAN data frame including a control field and a data field is generated with respect to each of the data fragments, and the generated CAN data frame is transmitted.
Abstract:
A method of manufacturing a cylindrical storage node in a semiconductor device, in which loss differences of the cylindrical storage node between the center and the edge of cell areas, caused by an etch-back process of storage node isolation, is minimized, thereby maintaining uniform electrical capacitances over the entire area of a semiconductor wafer.
Abstract:
Disclosed is a stock account/order/market price inquiry service method using a mobile terminal that is able to perform a stock account/order/market price inquiry service through a mobile terminal using a stock chip. A stock account/order/market price inquiry service method comprising the steps of: (1) displaying a lower menu page on a mobile terminal of the stock account/order service after a PIN authentication; (2) generating an account/order service request message on the basis of stock chip information read from a stock chip and service request information corresponding to the lower menu and then transmitting the same to a relay server; and (3) receiving a service response message corresponding to service request message from the relay server and displaying the same on the screen of a mobile terminal.
Abstract:
An apparatus for winding, in the form of a quadrupole, an optical fiber used for forming a sensor coil of a fiber optic gyroscope. A center shaft is supported by a pair of support sections. A cylindrical spool is fitted around the center shaft. A pair of winding disks are arranged adjacent to both ends of the spool so that they can be rotated about the center shaft. A pair of reels are mounted to facing surfaces of the winding disks so that both halves of the optical fiber to be wound on the spool can be wound on the reels, respectively. The winding disks can be rotated at the same velocity in opposite directions. The cylindrical spool is installed to be reciprocated along an axis of the center shaft. The respective reels mounted to the winding disks are spaced apart from each other by a predetermined interval.
Abstract:
A method of forming a thin film of copper on a substrate includes a first step of conducting a chemical vapor deposition (CVD) process using a metal organic (MO) source while applying a first bias voltage to the surface of the substrate and a second step of conducting a chemical vapor deposition process using a metal organic source while applying a second bias voltage to the substrate, wherein the second bias voltage is opposite in polarity to the first bias voltage. The process may include a third step of conducting a chemical vapor deposition process using a metal organic source while applying a third bias voltage to the substrate, where the third bias voltage has the same polarity as the first bias voltage.
Abstract:
Provided is a partition of a pouch type secondary battery provided between at least two pouch type secondary batteries stacked in order to configure a secondary battery module to prevent damage of a surface of the pouch type secondary battery and shaking of the pouch type secondary battery at the time of vibration while preventing damage of the pouch type secondary battery due to a short-circuit.
Abstract:
Provided is a battery module in which at least one battery cell including an electrode tab including an anode tab and a cathode tab is stacked, including: a sensing assembly installed in a space between the anode tab and the cathode tab at a side of the battery module at which the electrode tab is positioned; and a terminal installed at the side of the battery module at which the electrode tab is positioned and connected to each of the electrode tabs of the battery cells positioned at the outermost portions, wherein the terminal is bonded and connected to a surface positioned at an inner side of the battery module in both sides of the anode tab and the cathode tab.
Abstract:
The present invention related to an offline transaction payment system and a method and apparatus for the same, which receives an electronic payment request from a terminal, transmits a request for execution of an electronic payment application to the terminal, receives an application ID from the electronic payment application executed in the terminal, performs member verification using the received application ID, transmits the member verification result to the electronic payment application, receives a one-time password from the electronic payment application, and mediates an electronic payment for a transaction that takes place offline using the one-time password.
Abstract:
The present invention relates to a battery module case, and more particularly, to a battery module case in which sub-battery modules are slidably mounted in a vertical or horizontal direction, wherein each sub-battery module comprises one or more battery cells, electrode tabs extending in one direction from the respective battery cells, and a pouched type case consisting of aluminum laminate sheets for covering the surfaces of the battery cells, except for the surfaces on which the electrode tabs are formed. The battery module case of the present invention is formed into an assembly type structure to be coupled to the outer surfaces of the sub-battery modules, wherein the outer surfaces include surfaces on which the electrode tabs are formed. At least two or more sub-battery modules are stacked and arranged in parallel, such that the surfaces on which the electrode tabs are formed are aligned in the same direction.