Abstract:
A flexible substrate, a method of manufacturing a display substrate, and a method of manufacturing a display panel. A spinning device is filled with a source solution, and a carrier substrate is arranged such that the spinning device faces the carrier substrate. An electric field is formed between the spinning device and the carrier substrate by supplying a power to the spinning device and the carrier substrate, and a nano-fiber is formed by spraying the source solution toward the carrier substrate. A flexible substrate is formed on the carrier substrate by coating a polymer resin on the nano-fiber, a plurality of display cells are formed on the flexible substrate, and then a display substrate is formed by separating the carrier substrate from the flexible substrate.
Abstract:
An electrophoretic display (EPD) device and a method of manufacturing the EPD are disclosed. An EPD device includes a first substrate, a second substrate, and an electrophoretic layer. The first substrate includes a plurality of pixel areas, and each pixel area includes a first electrode. The second substrate faces the first substrate and includes a second electrode to form an electric field with the first electrode and a color filter corresponding to the first electrode. The electrophoretic layer is disposed between the first substrate and the second substrate and is controlled by an electric field formed by the first electrode and the second electrode to display an image. An end portion of the color filter extends beyond an end portion of the first electrode.
Abstract:
Disclosed is a liquid crystal display panel and manufacturing method thereof. The liquid crystal display panel includes a thin film transistor substrate, an opposite substrate facing the thin film transistor substrate, a pixel electrode formed on the thin film transistor substrate, and a common electrode formed on the opposite substrate. At least one of the pixel electrode and the common electrode includes conductive nanowires and a conductive filler.
Abstract:
A method of fabricating a flexible display device, the method including applying an adhesive layer including polyimide on a carrier substrate, laminating a flexible substrate on the adhesive layer, and separating the carrier substrate from the flexible substrate by irradiating a laser beam or light onto the adhesive layer.
Abstract:
A method of manufacturing a flexible display is provided, which includes adhering a first flexible mother substrate to a first supporter, cutting the first flexible mother substrate to divide the first flexible mother substrate into a plurality of first substrates, and forming a thin film pattern on the first substrates. Thus, the production yield of a flexible display device may be improved and the manufacturing process is more precise and easier.
Abstract:
A display apparatus includes a first substrate including a plurality of pixels, a first electrode arranged on the first substrate, a second substrate facing the first substrate, and a second electrode arranged on the second substrate and spaced apart from the first electrode, the second electrode to form an electric field in cooperation with the first electrode. At least one of the first and second electrodes includes a transparent conductive nanomaterial having a transmittance of no less than 73% to no more than 100% and a sheet resistance of 0 ohms to 100 ohms.
Abstract:
A method of fabricating a flexible display device. The method includes forming an adhesive layer on a first carrier substrate; laminating a first flexible substrate on the adhesive layer, so that a first separation layer of the first flexible substrate is disposed on the adhesive layer; forming a thin film transistor array on the first flexible substrate; and separating the first carrier substrate from the flexible substrate by directing a laser beam onto the first separation layer. The first separation layer comprises silicon nitride (SiNx) with amounts of nitride A1 and amounts of silicon B1 satisfying 0.18≦{A1/B1}≦0.90.
Abstract:
A touch screen display device includes a common electrode, a base substrate disposed opposite to the common electrode, a display signal line formed on the base substrate, a plurality of pixel electrodes, a touch position sensing part formed between the base substrate and the pixel electrodes, the touch position sensing part sensing a change of electrostatic capacitance formed between the common electrode and the touch position sensing part, and a display layer disposed between the common electrode and the pixel electrodes. The display layer includes a plurality of micro capsules comprising positively charged pigment particles and negatively charged pigment particles.
Abstract:
An electrophoretic display device and a manufacturing method thereof are provided. The manufacturing method includes forming a first mother substrate that has a first thin structure, and forming a second mother substrate that has a second thin structure. The second mother substrate faces the first mother substrate. The manufacturing method also includes disposing an electrophoretic material on one of the first mother substrate and the second mother substrate, and enclosing a region on which the electrophoretic material is disposed with a sealant. The manufacturing method further includes combining the first mother substrate and the second mother substrate using pressure applied thereto to form an electrophoretic layer between the first mother substrate and the second mother substrate.
Abstract:
A method of fabricating a flexible display device. The method includes forming an adhesive layer on a first carrier substrate; laminating a first flexible substrate on the adhesive layer, so that a first separation layer of the first flexible substrate is disposed on the adhesive layer; forming a thin film transistor array on the first flexible substrate; and separating the first carrier substrate from the flexible substrate by directing a laser beam onto the first separation layer. The first separation layer comprises silicon nitride (SiNx) with amounts of nitride A1 and amounts of silicon B1 satisfying 0.18≦{A1/B1}≦0.90.