Abstract:
A method and system for determining standby time for a mobile station uses a battery simulator, a base station emulator, a computer to control the test equipment and MSUT for testing a mobile station. The computer includes a module for determining a radio off battery voltage, a module for deriving a battery capacity in dependence upon the radio off battery voltage, a module for measuring battery capacity usage in a predetermined time while the mobile station is in standby mode and a module for determining a standby time for the mobile station in dependence upon the battery capacity and the battery capacity usage, where the predetermined time is less than the standby time.
Abstract:
The wireless communication device includes a wireless communication transceiver to generate an oscillator control signal and an activation signal, a positioning-system receiver (e.g. a GPS receiver) to process received positioning signals, and a shared oscillator (e.g. a temperature compensated and voltage controlled crystal oscillator TCVCXO) responsive to the oscillator control signal and to generate a reference frequency signal for the wireless communication transceiver and the positioning-system receiver. The positioning-system receiver may control processing of the received positioning signals based upon the activation signal to reduce a noise contribution (e.g. phase noise) due to frequency control of the shared oscillator based upon the oscillator control signal. The activation signal may indicate that the oscillator control signal is being varied to provide frequency control or adjustment of the shared oscillator.
Abstract:
A communications subsystem for a wireless device for correcting errors in a reference frequency signal. The communications subsystem comprises a frequency generator for generating the reference frequency signal and a closed loop reference frequency correction module that generates a reference frequency adjustment signal for correcting the reference frequency signal when the communications subsystem operates in closed loop mode. The subsystem further includes an open loop frequency correction means that that samples values of the reference frequency adjustment signal during the closed loop mode and generates a frequency correction signal for correcting the reference frequency signal when the communications subsystem operates in a mode other than closed loop mode.
Abstract:
A method of updating map data entails capturing an image using a camera, determining a location of an object in the image, creating new map data to represent the object in the image, and updating a map database to include the new map data for the object in the image. This method may be implemented on a GPS-enabled wireless communications device having an onboard camera which can transmit the new map data to a map server for updating its map database. Determining the position of the object in the image relative to the wireless device may be accomplished using a rangefinder and compass, triangulation of multiple images of the object, or a stereoscopic camera. The accuracy of the GPS position fix may be improved by capturing images of recognizable objects for which location coordinates are available.
Abstract:
A method and system for determining standby time for a mobile station uses a battery simulator, a base station emulator, a computer to control the test equipment and MSUT for testing a mobile station. The computer includes a module for determining a radio off battery voltage, a module for deriving a battery capacity in dependence upon the radio off battery voltage, a module for measuring battery capacity usage in a predetermined time while the mobile station is in standby mode and a module for determining a standby time for the mobile station in dependence upon the battery capacity and the battery capacity usage, where the predetermined time is less than the standby time.