Abstract:
Techniques for supporting multiple service discovery protocols (SDPs) on a multi-functional peripheral (MFP) are provided. The MFP includes a plurality of SDP services, a plurality of SDP adapters, and a device service management system (DSMS). Each SDP service interfaces with one SDP adapter of the plurality of SDP adapters. Each SDP adapter interfaces with the DSMS. Each SDP adapter translates messages from its corresponding SDP service into a format the DSMS understands, and vice versa. The DSMS manages service metadata information about multiple services provided by the MFP. In response to a request, from a client, for metadata of one or more services provided by the MFP, a SDP service requests the metadata from its corresponding SDP adapter. The SDP adapter requests the metadata from the DSMS, which responds to the SDP adapter with the metadata. The SDP adapter sends the metadata to the SDP service, which sends the metadata to the client.
Abstract:
A semiconductor device comprises one or more self aligned contacts. The device may include one or more gate structures adjacent a first doped region. The device may comprise a first dielectric overlaying the gate structure and a first layer comprising silicon and overlaying a top of each said gate structure, the first layer being separated from each said conductive gate by the first dielectric. The first layer having an opening overlying the first doped region, and the first dielectric extends substantially down side portions of the opening. The device includes a first conductive contact having at least a portion extending into the opening, the contact electrically contacting the first doped region at a bottom region of the opening, the contact being insulated each conductive gate of each gate structure adjacent to the contact by the first dielectric.
Abstract:
Disclosed is a bidet apparatus. The apparatus includes a second water supply source in addition to a source utilizing existing hot and cold supply lines. Dependent on the situation, these two sources can independently or cooperatively supply the water to a spray head mounted on the underside of a toilet seat.
Abstract:
Dielectric regions (210) are formed on a semiconductor substrate between active areas of nonvolatile memory cells. The top portions of the dielectric region sidewalls are etched to recess the top portions laterally away from the active areas. Then a conductive layer is deposited to form the floating gates (410). The recessed portions of the dielectric sidewalls allow the floating gates to be wider at the top. The gate coupling ratio is increased as a result. Other features are also provided.
Abstract:
In a nonvolatile memory cell having at least two floating gates, each floating gate (160) has an upward protruding portion. This portion can be formed as a spacer over a sidewall of the select gate (140). The spacer can be formed from a layer (160.2) deposited after the layer (160.1) which provides a lower portion of the floating gate. Alternatively, the upward protruding portion and the lower portion can be formed from the same layers or sub-layers all of which are present in both portions. The control gate (170) can be defined without photolithography. Other embodiments are also provided.
Abstract:
A first dielectric (120) and a first floating gate layer (130.1) are formed on a semiconductor substrate (110). The first dielectric, the first floating gate layer, and the substrate are etched to form isolation trenches (150). The first dielectric (120) is etched to pull the first dielectric away from the trench edges (150E) and/or the edges of the first floating gate layer (130E). The trench edges and/or the edges of the first floating gate layer are then oxidized. The trenches are filled with a second dielectric (210.2), which is then etched laterally adjacent to the edges of the trench and the first floating gate layer. A second floating gate layer (130.2) is formed to extend into the regions which were occupied by the second dielectric before it was etched.
Abstract:
In a nonvolatile memory, the select gates (144S) are formed from one conductive layer (e.g. polysilicon or polyside), and the wordlines (144) interconnecting the select gates are made from a different conductive layer (e.g. metal). The wordlines overlie an interlevel dielectric (310) formed over control gates (134). The dielectric thickness can be controlled to reduce the capacitance between the wordlines and the control gates. In some embodiments, the floating gates (120) are fabricated in a self-aligned manner using an isotropic etch of the floating gate layer.
Abstract:
To fabricate a nonvolatile memory, a select gate (140) is formed over a semiconductor substrate. A dielectric (810, 1010, 1030) is formed over the select gate. A floating gate layer (160), e.g. doped polysilicon, is formed over the select gate. The floating gate layer is removed from over at least a portion of the select gate. A dielectric (1510), e.g., ONO, is formed over the floating gate layer, and a control gate layer (170) is formed over this dielectric. The control gate layer has an upward protrusion over the select gate. Then another layer (1710), e.g. silicon nitride, is formed on the control gate layer, but the protrusions of the control gate layer are exposed. The exposed portion of the control gate layer is etched selectively until the control gate layer is removed from over at least a portion of the select gate. Then another layer (1910) is formed on the exposed portion of the control gate layer. This is thermally grown silicon dioxide in some embodiments. Then the silicon nitride is removed. The control gate layer, the ONO, and the floating gate layer are etched selectively to the silicon dioxide to define the control and floating gates. Other embodiments are also provided.
Abstract:
In a nonvolatile memory, the select gates (144S) are formed from one conductive layer (e.g. polysilicon or polyside), and the wordlines (144) interconnecting the select gates are made from a different conductive layer (e.g. metal). The wordlines overlie an dielectric (302, 304, 310) formed over control gate lines (134). Each control gate line provides control gates for one column of the memory cells. The adjacent control gate lines for the adjacent memory columns are spaced from each other. The dielectric thickness can be controlled to reduce the capacitance between the wordlines and the control gates. In some embodiments, the floating gates (120) are fabricated in a self-aligned manner using an isotropic etch of the floating gate layer.
Abstract:
In a nonvolatile memory, the select gates (144S) are formed from one conductive layer (e.g. polysilicon or polyside), and the wordlines (144) interconnecting the select gates are made from a different conductive layer (e.g. metal). The wordlines overlie an interlevel dielectric (310) formed over control gates (134). The dielectric thickness can be controlled to reduce the capacitance between the wordlines and the control gates. In some embodiments, the floating gates (120) are fabricated in a self-aligned manner using an isotropic etch of the floating gate layer.